• Title/Summary/Keyword: Conducting atomic force microscopy

Search Result 27, Processing Time 0.019 seconds

Effects of Oxygen Partial Pressure on ITO Thin Films PrePared by Reactive dc Magenetron Sputtering (반응성 dc 미그네트론 스퍼링법으로 제조된 IPO박막에 미치는 산소분압의 영향)

  • 신성호;신재혁;박광자;김현우
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.171-176
    • /
    • 1998
  • Transparent conducting ITO (Indium Tin Oxide) thin films were prepared on soda lime glass by reactive dc magnetron sputtering mothod. The maaterial properties were measured by the X-ray diffraction meter (XRD) and atomic force microscopy (AFM) scanning. As a resuIts, the (400) park for $O_2 gas rate 2% grows uniquely as the preferred orientaon. However, the (400) peak exists at $O_2 gas rate 5% as well as the (222) peak appears abruptly as the main orietation. Both <100> and <111> grain alignments are consisted simultaneously in the XRE pattern of ITO thin films. The electrical charcteristics were esimated by the electrical resistivity, optical transmission, and Hall mobillty, ect. The resistivity of ITO thin film deposited at 4cm from the substrate center is increased from $2\times10^-4$ to $8\times10^-4\Omega$cm as a function of $O_2$ gas pressure (0~5%). The optical transmission curves with a rising of $O_2$ gas rate become shifted into longer wavelength range.

  • PDF

Effect of O2 Concentration and Annealing Temperature on the Characteristics of Indium Zinc Oxide Thin Films (Indium Zinc Oxide 박막 특성에 대한 O2 농도와 열처리 온도의 영향)

  • Cho, Han Na;Li, Yue Long;Min, Su Ryun;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.644-647
    • /
    • 2006
  • The indium zinc oxide (IZO) thin films were deposited using a radio frequency reactive magnetron sputtering method. Among the various processing variables, $O_{2}$ concentration and annealing temperature after deposition were selected and the optical, electrical, and structural properties of IZO thin films were investigated. As the $O_{2}$ concentration increased, the deposition rate of IZO thin films decreased, the resistivity increased and the transmittance slightly increased. According to atomic force microscopy analysis, the IZO films deposited at pure Ar showed rough surface and those deposited with $O_{2}$ addition exhibited relatively smooth surface. The IZO thin films deposited at pure Ar were annealed at 250, 350, and $450^{\circ}C$, respectively. The IZO thin film deposited at pure Ar showed the lowest transmittance and resistivity and resistivity greatly increased at the annealing temperature exceeding $250^{\circ}C$. The higher annealing temperature IZO films were annealed at, the smoother surface the films showed. The x-ray diffraction revealed that IZO films annealed at higher temperature had better crystalline structures.

Deposition of Poly(3-hexylthiophene)(P3HT) by Vapor Deposition and Patterning Using Self-Assembled Monolayers (Oxide 표면에 Self-Assembly Monolayers를 이용한 전도성 고분자 Poly(3-hexylthiophene)(P3HT) 증착 및 Patterning 연구)

  • Pang, Il-Sun;Kim, Hyun-Ho;Kim, Sung-Soo;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.664-668
    • /
    • 2008
  • Vapor phase polymerization of a conductive polymer on a $SiO_2$ surface can offer an easy and convenient means to depositing pure and conductive polymer thin films. However, the vapor phase deposition is generally associated with very poor adhesion as well as difficulty when patterning the polymer thin film onto an oxide dielectric substrate. For a significant improvement of the patternability and adhesion of Poly(3-hexylthiophene) (P3HT) thin film to a $SiO_2$ surface, the substrate was pre-patterned with n-octadecyltrichlorosilane (OTS) molecules using a ${\mu}$-contact printing method. The negative patterns were then backfilled with each of three amino-functionalized silane self-assembled monolayers (SAMs) of (3-aminopropyl) trimethoxysilane (APS), N-(2-aminoethyl)-aminopropyltrimethoxysilane (EDA), and (3- trimethoxysilylpropyl)diethylenetriamine (DET). The quality and electrical properties of the patterned P3HT thin films were investigated with optical and atomic force microscopy and a four-point probe. The results exhibited excellent selective deposition and significantly improved adhesion of P3HT films to a $SiO_2$ surface. In addition, the conductivity of polymeric thin films was relatively high (${\sim}13.51\;S/cm$).

Characteristics of organic electroluminescent devices using conducting polymer materials with buffer layers (전도성 고분자를 Buffer층으로 사용한 유기 발광 소자의 제작과 특성 연구)

  • 이호식;박종욱;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.125-128
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layer's thickness, morphology and interface with electrode. In this study, light-emitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine).Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. And we used other buffer layer of PPy(Polypyrrole) with ITO/PPy/TPD/Alq$_3$/Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and at 225nm and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$ and at 350nm. We also studied EL spectrum in the cell structure of ITO/TPD/Alq$_3$/Al and ITO/PPy/TPD/Alq$_3$/Al and we observed the EL spectrum peak at 510nm from our cell

  • PDF

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Comparison of Electrical Properties and AFM Images of DSSCs with Various Sintering Temperature of TiO2 Electrodes (TiO2 전극의 소결 온도에 따른 DSSCs의 전기적 특성 및 AFM 형상 비교)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Lee, Won-Jae;Koo, Bo-Kun;Song, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature$(350\;to\;550^{\circ}C)$. $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSSCs were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). Below sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively lower due to lower open circuit voltage. Oppositely, above sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively higher due to higher open circuit voltage. In both cases, lower fill factor (FF) was observed. However, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSSCs were mutually complementary, enhancing highest fill factor and efficiency. Such results can be explained in comparison of surface morphology with schematic diagram of energy states on the $TiO_2$ electrode surface. Consequently, it was considered that optimum sintering temperature of a-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

Properties of ITO on PES film in dependence on the coating conditions and vacuum annealing temperatures (증착조건과 진공열처리 온도에 따른 ITO/PES 박막의 특성 연구)

  • Lee, Jae-Young;Park, Ji-Hye;Kim, Yu-Sung;Chun, Hui-Gon;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.227-231
    • /
    • 2007
  • Transparent conducting indium tin oxide (ITO) films were deposited onto the Polyethersulfone (PES) substrate by using a magnetron sputter type negative metal ion source. In order to investigate the influence of cesium (Cs) partial pressure during deposition and annealing temperature on the optoelectrical properties of ITO/PES film the films were deposited under different Cs partial pressures and post deposition annealed under different annealing temperature from $100^{\circ}C$ to $170^{\circ}C$ for 20 min at $3\;{\times}\;10^{-1}$ Pa. Optoeleetrical properties of ITO films deposited without intentional substrate heating was influenced strongly by the Cs partial pressure and the Cs partial pressure of $1.5\;{\times}\;10^{-3}$ Pa was characterized as an optimal Cs flow condition. By increasing post-deposition vacuum annealing temperature both optical transmission in visible light region and electrical conductivity of ITO films were increased. Atomic force microscopy (AFM) micrographs showed that the surface roughness also varied with post-deposition vacuum annealing temperature.