• 제목/요약/키워드: Conditional probability density function

검색결과 34건 처리시간 0.02초

계절별 저수지 유입량의 확률예측 (Probabilistic Forecasting of Seasonal Inflow to Reservoir)

  • 강재원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정 (Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model)

  • 조성일;이재용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1155-1168
    • /
    • 2016
  • 기상 자료의 경우 한 지역의 기후가 인접지역의 기후와 비슷한 양상을 띄고 각 지역의 확률 밀도 함수 (probability density function)가 잘 알려진 확률 모형을 따르지 않는다는 것이 알려져 있다. 본 논문에서는 이러한 특성을 고려하여 이상 기후 현상이 뚜렷히 나타나는 여름철 평균 극한 기온(extreme temperature)의 확률 밀도 함수를 추정하고자 한다. 이를 위하여 공간적 상관관계 (spatial correlation)를 고려하는 비모수 베이지안 (nonparametric Bayesian) 모형인 조건부 자기회귀 종추출 혼합모형 (mixtures of conditional autoregression species sampling model)을 이용하였다. 자료는 이스트앵글리아 대학교 (University of East Anglia)에서 제공하는 전 지구의 최대 기온과 최소 기온자료 중 우리나라에 해당하는 지역의 자료를 사용하였다.

Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation

  • Yee, Jaeyong;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.17.1-17.11
    • /
    • 2022
  • Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.

ON CHARACTERIZATIONS OF PARETO AND WEIBULL DISTRIBUTIONS BY CONSIDERING CONDITIONAL EXPECTATIONS OF UPPER RECORD VALUES

  • Jin, Hyun-Woo;Lee, Min-Young
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.243-247
    • /
    • 2014
  • Let {$X_n$, $n{\geq}1$} be a sequence of i.i.d. random variables with absolutely continuous cumulative distribution function(cdf) F(x) and the corresponding probability density function(pdf) f(x). In this paper, we give characterizations of Pareto and Weibull distribution by considering conditional expectations of record values.

CHARACTERIZATIONS OF THE LOMAX, EXPONENTIAL AND PARETO DISTRIBUTIONS BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.149-153
    • /
    • 2009
  • Let {$X_{n},\;n\;\geq\;1$} be a sequence of independent and identically distributed random variables with absolutely continuous cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x). Suppose $X_{U(m)},\;m = 1,\;2,\;{\cdots}$ be the upper record values of {$X_{n},\;n\;\geq\;1$}. It is shown that the linearity of the conditional expectation of $X_{U(n+2)}$ given $X_{U(n)}$ characterizes the lomax, exponential and pareto distributions.

  • PDF

변형된 혼합 밀도 네트워크를 이용한 비선형 근사 (Nonlinear Approximations Using Modified Mixture Density Networks)

  • 조원희;박주영
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.847-851
    • /
    • 2004
  • Bishop과 Nabnck에 의해 소개된 기존치 혼합 밀도 네트워크(Mixture Density Network)에서는 조건부 확률밀도 함수의 매개변수들(parameters)이 하나의 MLP(multi-layer perceptron)의 출력 벡터로 주어진다. 최근에는 변형된 혼합 밀도 네트워크(Modified Mixture Density Network)라고 하는 이름으로 조건부 확률밀도 함수의 선분포(priors), 조건부 평균(conditional means), 그리고 공분산(covariances) 등이 각각 독립적인 MLP의 출력벡터로 주어지는 경우를 다룬 연구가 보고된 바 있다. 본 논문에서는 조건부 평균이 입력에 관해 선형인 경우를 위한 버전에 대한 이론과 매트랩 프로그램 개발을 다룬다. 본 논문에서는 우선 일반적인 혼합 밀도 네트워크에 대해 간단히 설명하고, 혼합 밀도 네트워크의 출력인 다층 퍼셉트론의 매개변수를 각각 다른 다층 퍼셉트론에서 학습시키는 변형된 혼합 밀도 네트워크를 설명한 후, 각각 다른 다층 퍼셉트론을 통해 매개변수를 얻는 것은 동일하나 평균값은 선형함수를 통해 얻는 혼합 밀도 네트워크 버전을 소개한다. 그리고, 모의실험을 통하여 이러한 혼합 밀도 네트워크의 적용가능성에 대해 알아본다.

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.

Identification of flexible vehicle parameters on bridge using particle filter method

  • Talukdar, S.;Lalthlamuana, R.
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.21-43
    • /
    • 2016
  • A conditional probability based approach known as Particle Filter Method (PFM) is a powerful tool for system parameter identification. In this paper, PFM has been applied to identify the vehicle parameters based on response statistics of the bridge. The flexibility of vehicle model has been considered in the formulation of bridge-vehicle interaction dynamics. The random unevenness of bridge has been idealized as non homogeneous random process in space. The simulated response has been contaminated with artificial noise to reflect the field condition. The performance of the identification system has been examined for various measurement location, vehicle velocity, bridge surface roughness factor, noise level and assumption of prior probability density. Identified vehicle parameters are found reasonably accurate and reconstructed interactive force time history with identified parameters closely matches with the simulated results. The study also reveals that crude assumption of prior probability density function does not end up with an incorrect estimate of parameters except requiring longer time for the iterative process to converge.

수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석 (Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model)

  • 이정원;김용모
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

A Heuristic Approach for Approximating the ARL of the CUSUM Chart

  • Kim, Byung-Chun;Park, Chang-Soon;Park, Young-Hee;Lee, Jae-Heon
    • Journal of the Korean Statistical Society
    • /
    • 제23권1호
    • /
    • pp.89-102
    • /
    • 1994
  • A new method for approximating the average run length (ARL) of cumulative sum (CUSUM) chart is proposed. This method uses the conditional expectation for the test statistic before the stopping time and its asymptotic conditional density function. The values obtained by this method are compared with some other methods in normal and exponential case.

  • PDF