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A Heuristic Approach for Approximating
the ARL of the CUSUM Chart

Byungchun Kim', Changsoon Park?, Younghee Park® and Jaeheon Lee*

ABSTRACT

A new method for approximating the average run length (ARL) of
cumulative sum (CUSUM) chart is proposed. This method uses the
conditional expectation for the test statistic before the stopping time
and its asymptotic conditional density function. The values obtained
by this method are compared with some other methods in normal and

exponential case.

KEYWORDS: Cumulative sum control chart, Average sample number,
Sequential probability ratio test, Average sample number, Operating charac-

teristic function.

1. INTRODUCTION

Many statistical control charts have been developed to control the quality of
the products. Among them, the cumulative sum (CUSUM) control chart was
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proposed by Page (1954). The CUSU M chart has been known to be efficient
in detecting small and consistent changes of the parameter when compared
with Shewhart chart (1931).

Suppose that X;, X,,- - are sequentially observed i.i.d. random variables
with density f(z;0) where 6 denotes the quality of the process. The process
{Xi,7=1,2,---}is said to be in-control if § = 8, and out-of-control if § = 0,(>
o). For convenience, only positive shifts of the parameter # are considered.

The CUSU M procedure based on the log probability ratio statistic (L PRS)
is defined as follows: let

n i
W, = ; Z; — orélzlgllngzi’

1

where Z; = log f(X;;6:)/f(Xi;00), and define the run length as
T = min{n; W, > h},

where h is a suitably chosen constant and 3.0_, Z; = 0. We assume that
Var(Z;) exists and greater than 0. It has been shown by Moustakides (1986)
that the CUSUM procedure based on LPRS is optimal in detecting a change
in distribution in the sense that it minimizes Ey, T for any fixed Eg,T.

Page (1954) showed that the CUSUM procedure can be expressed as a
sequence of Wald’s (1947) sequential probability ratio tests (SPRT) with lower
boundary zero, upper boundary h, and an initial value of zero. The CUSUM
procedure is mathematically equivalent to performing the SPRT’s successively
until the upper boundary is reached and if the lower boundary is reached, a
new SPRT is performed. According to the mathematical equivalence, the
average run length (ARL) of the CUSUM chart can be expressed as

ASN

ARL = —ocor (1.1)

where ASN and OC(8) denote the average sample number and the operating
characteristic functions of the SPRT with boundaries (0, k), respectively.
The ASN and OC functions of the SPRT are not known explicitly in
general, and thus neither the ARL. Hence many methods have been devel-
oped for approximating the ARL such as Van Dobben de Bruyn (1968), Goel
and Wu (1971), Reynolds (1975), Kahn (1978), Siegmund (1979), Park (1987),
and Park and Kim (1990). A new approach to approximate the ARL is intro-



ARL OF THE CUSUM CHART 91

duced here and compared with the results of existing methods in normal and
exponential case.

2. THE METHOD OF APPROXIMATION

Define the sample number of the SPRT
N =min{n: S, <0or S, > h},

where S, = Y1, Z;, and OC(8) = P(Sy < 0). Then E(N) and OC(6) denote
the ASN and OC functions of the SPRT with boundaries (0, &), respectively.

In this section, a new approximation technique for the calculation of the
ARL is presented. This method modifies the CBST(Conditon of Before Stop-
ping Time) method (Park and Kim, 1990) by approximating the conditional
density function of Sy_;. After taking the conditional expectation for Sy_;,
the CBST method replaces Sy_; by the conditional expectation of Sy_1, but
this method calculates the conditional expectation by using the asymptotic
conditional density function of Sy_;.

The expectation of Sy can be expressed as

E(Sn) = E(Sn|Sn > h)(1 = OC(8)) + E(Sy|Sny < 0)OC(0) (2.1)
and also by Wald equation,
E(Sn) = E(N)- E(Z). (2.2)

From (2.1) and (2.2), we have the expression for the ASN function

_ E(Sn|Sn 2 h)(1 — OC(8)) + E(Sn|Sn < 0)OC(6)
B E(Z)

E(N) , (2.3)

if E(Z) #0.
For the case E(Z) = 0, we use E(S%) instead of E(Sn).

E(S%) = E(S%|Sn > h)(1 — OC(8)) + E(S%|Sy < 0)0C(6). (2.4)

Also, by Wald equation
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E(S%) = E(N) - E(Z?). (2.5)

From (2.4) and (2.5), we have

E(SkISn 2 h)(1 — OC(0)) + E(S}|Sn < 0)OC(6)

vy = E(Z7)

» (26)

if E(Z) = 0.
To calculate E(Sy|Sy > k) and E(Sy|Sy < 0), we take the conditional
expectation for Sy_;. That is,

E(SNISN > h) = E{E(SNISN > h,Sv_1 )}
= fo E(Zy + SN—IISN 2 h,Sno1=y) fsy_,(y|Sn = h)dy
= Jo{y+ E(Zn|Zn 2 h—y)} - fsy_, (y|Sy > h)dy,

where fs,_, (y|-) is the conditional density function of Sy_;.
Here we use the following approximation. For 0 < y < h,

fons(WISN 2 k) = fs,_,(ylSn > h,0 < Sy < )
P(Zu 2 h = Sn1|Sn-1=9) - fs,,(¥)
f P(Zn2h=5p-1|Sn_1=2)-fs,_, (z)dz
P(Z, > h—y)

Jo P(Z, > h —2)da’

since for large n and 0 < z < k, fs,_,(y) = fs,_, () if Var(Z;) > 0.
Therefore, we obtain

E(SNISNZh)z/O" {y+E(ZN|fZN(>zh>Z)iﬁf 2h=Y 0 @

Similarly,
E(Sy|Sn <0) = E}{LE(SNISN <0,S8n-1)}
= [ E(Zx + Sn-alSy < 0,5n1 = y) - fsu, (WIS < 0)dy

= [+ E@niZn < —p)} - fou 61w < 0)dy,

and
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fSN—l(yISN S 0) ~ fSn—-l(ylsn S 0’0 < S a1 < h)
P(Zn _<.. _y)

JEP(Z, < —2)dz’

Therefore,

My + E(ZnlZn < —u)} P(Z < -9) )

P P(Z, < —2)ds (28)

E(Sn|Sn < 0) z/o

Next, for the case E(Z) = 0, we approximate the E(S%|Sy > h) and
E(S%|Sy < 0) with the same technique.

E(S4|Sn > h)
= EEE(S,%,ISN > h,Svo1)})
= [ E((Z + Sn-1)?ISn 2 by Sn-1 = 1) fou (315w 2 h)dy
h
= [ +20B@nZn 2 h—y) + B(Z}1Zn 2 h =)} o (4w 2 B)dy

- /" {v*+2E(Zn|Zy 2 h—y) + E(Z{|Zn 2 h—y)} - P(Zn 2 h — y)dy
0 J& P(Zy > b~ z)dx '

(2.9)

Similarly,

E(S%|Sn £0)

. /h {v* +2yE(Zn12Zn < —y) + E(Z}|2n £ )} P(Zn S =Y) 4 (9 1)
A J2 P(Z, < —a)da |

From Wald’s fundamental identity,

I = B(eosy)
E(e405x% |8y > h)(1 — OC(8)) + E(e495%|Sy < 0)0C/(6),

where d(6) is the unique nonzero solution d of E(e*?) = 1. Thus

E(e¥®5%|Sy > h) —1

A1
E(ed(")leSN > h) - E(ed(o)SN|5'N < 0)’ (2 )

0C(8) =

it E(Z) #0 (ie. d(6) #0).
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For approximation of the OC function, we use the same technique.

E(e?®5%|Sy > h)
= E{E( dOSN Sy > h,Sn-1)}

_/ (4O EN+S8-D|Gy > b, Sy_y = y) - fsw_, (y|Sn = h)dy
/O . E(e*DN|Zn > h—y) - fsy_,(y|Sn = h)dy

/h ed®v . E(e¥O2N|Zy > h—y)- P(Z, > h —y)
~ 0 fo (Zn 2 h— :E)d

dy. (2.12)

Similarly,

h 38y | d(8)Zn < —4) - < —
o P(Z, < —z)dx

E(e OISy < 0) ~ [
0
If E(Z) =0, we use L’Hospital’s rule to (2.11) and obtain the OC function as

E(Sn|Sn =2 h)

0C(6) = E(Sn|Sy > h) — E(Sy|Sy < 0)

(2.14)

Therefore the ASN function is calculated by submitting (2.7), (2.8), OC(9)
o (2.3), where OC(#9) is calculated by submitting (2.12), (2.13) to (2.11). For
the case F(Z) = 0, the ASN function is calculated by (2.9), (2.10), OC(8) to
(2.6), where OC(8) is calculated by (2.14). Finally the ARL is calculated by
(1.1). Above (2.7), (2.8), (2.9), (2.10), (2.12) and (2.13) can be easily obtained
by using the computer programs such as IMSL library FORTRAN subroutines.

3. NORMAL CASE

In evaluating the accuracy of the ARL obtained by the new method, we
will compare the new method with the results of the SLAE(Systems of Linear
Algebraic Equations) method (Goel and Wu, 1971) and the CBST method
(Park and Kim, 1990) for cases where the underlying destribution is normal.
This is because the SLAE method is a standard method which can produce
almost exact values numerically, and the CBST method is better than or at
least as good as the other approximation methods in normal case.
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Consider that {X;,7 =1,2,-.-} are i.i.d. random variables from a normal
distribution with mean # and unit variance and consider the detection problem

for 8 = 6y = 0 verse 8 = 0;(> 0). Then

01 + 6o

Z; = (61 — Oo)(X; - 5 )s

and Z; has a normal distribution with mean g = (6; — 65)(6 — (61 + 65)/2) and
variance o = (0, — 6,)2.
The expressions in (2.7) and (2.8) are derived as

ot BnlZ 2 h =) P(n 2 h=y)

E(Sn|Sn > h) fo (Z S d
— h {y +p+a¢(m)}q)(y+y— )d
B [) f q)(z+ _h)da: Y
/" (y + p)@(¥re=2 ")+a¢( )d
0 A <I>(“g zhichy g ¥
and
E(Sy|Sn < 0) ks E(ZivnltZSZD(SZ; ?}_zfd(f e
_ /h {y+p —G;((ﬁ))}@(—ya—u)d
ek (> ey
ytu —+£)—o
'/0 fh O(==+)dz %,

where ¢(-) and ®(-) denote the density and distribution function of a standard
normal distribution, respectively.

For the case p = 0, the expressions in (2.9) and (2.10) are obtained as
follows.

(SN|SN>h)
~/ {v* +2yE(Zn|Zn 2 h—y) + E(Z}|Zn 2 h—y)} - P(Z, >h—y)
0 fhpP(Z, >h—ac)dw
_/ (v* + o) ®(X2) + (y + h)og(2)
Jo ®(=)dz

dy,



96 B. Kim , C.Park , Y. Park and J. Lee

E(S}|Sn <0)
~ /” {y* + 2 E(Zn|Zn < —y) + E(23) 2y < —y)} - P(Z, < —y)dy
~Jo Pz, < —z)dz
_ /" (¥ + %) ®(ZE) — yog(=2)

o I O(3F)dz

dy.

Similarly, the expressions in (2.12) and (2.13) are obtained as

Y ed(g)yE(ed(a)ZNlZN 2h—y)-P(Z,>h - y)d
~ /o JSP(Zy>h - r)dz Y
RUOMECULISE /h edw)yq)(yia—u +d(6)o)
0 foh (I)(x—t,,—u)d:”

E(efOSv |5y > h)

dy,

N /h elOVE(e0)2n| 7, < —-y) - P(Z, < _y)d
o lo P(Z, < ~a)dz ’
= ety 1R — d(0)o)
0 foh <I%%ﬂ)dm

E(e?®3¥ |5y < 0)

?

where d(ﬂ) = (01 + 00 - 20)/(01 - 00)

The SLAE method (Goel and Wu, 1971) for estimating the ARL is as
follows. Let p(z) and N(z) be the OC and ASN functions with starting point
at z and boundaries (0,%), then we have the following expressions, which
belong to the family of Fredholm equations of the second kind.

pe)= [T

x—

SO+ [ p(e) 1 o(E g (3

N(z)=1+ /0 " Nz)- é : ¢(?¥)dx. (3.2)

By the Gaussian quadrature formula, equations (3.1) and (3.2) can be reduced
to

=) pa), (33

Vit il AR <D
P(Z)~‘I’(T)+kglwk - #(
NEz)~1+ doheg Wi - Clr . ¢(£“%ﬁ) - N(zy), (3.4)

where wy and z; are the weights and roots of the Gaussian quadrature for the
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interval (0, k) respectively, and m is the number of Gaussian points used.
The values p(zx) in equation (3.3) are obtained by solving the following
SLAE

(I-C). P=B,

where B’ = {p(a1), -, p(en)}, B = {8((b— 21 — p)/0),,&((b — 2 —
p)/o)}, C={c(i,j)} is an m x m matrix for ¢(¢,7) = w; - ¢((z; —x; — p) /o) /o

,fore,7=1,2,---;m, and Iis an m x m identity matrix.
Similarly, the values N(z) in equation (3.4) are obtained from
I-C)-N=1,

where N’ = {N(z), -+, N(z,)} and 1 is an m X 1 unit vector.

For convenience of numerical comparisons, we let 8, = —8,, ' = 6/(8,—6,),
k' = h/(6; — ). Several combinations of A’ and 6§ are employed for this
purpose. From TABLE 1, it is seen that the proposed method is better than
the CBST method for almost all the cases in estimating the ARL. Therefore
the proposed approximate method for the ARL appears to be good enough to
apply in practice. The reason why the difference in the ARL value is relatively
high for large negative 8’ is that the OC value in the denominator of (1.1) is
nearly 1. Thus the ARL value is very sensitive to the OC and the ASN value.

4. EXPONENTIAL CASE

Suppose that {X;,i = 1,2,...} areii.d. with density f(z; ) = X-e™**,z >
0 and consider the detection problem for A = Ao = 1 versus A = A\;(> 1). In
this case, Z; = —(A; — 1)X; + log Ay, and d(A) is the unique nonzero solution

of (Tli%%ﬁ = 1. Then the probability density function of Z; is

A _Allog Ay —2

9(z;A) = V-

The expressions in (2.7) and (2.8) are obtained as follows

97
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E(Sn|Sy > )
N/" {y+ E(ZnIZn 2 h—y)}-P(Z. 2 h—y)
0 JEP(Z, > h—z)d
Alog A
_ zlogAi{logAs +2h — by g (h— A=lyNclfem N5 )

Alog Ay
log Ay + =1 {e” T — 1}

dy

. (@)

Zn|Zny £ -y)} - P(Z, < _y)dy
Jo P(Zy < —z)dz (4.2)

B(sulsw <0) ~ [ WEE

Ar—1
A

Similarly, the expressions in (2.12) and (2.13) are derived as
E(efO5N |5y > h)
N /h ed®)y . E(e?®2n |70 > h — y) - P(Z, > h —y)
~Jo JEP(Zy > h—z)dz

Alog A
dNh {ed(Nloghs _ 1} 4 A%ed(x)h{e—T‘_—} ~1}]

dy

A 1
_ Taonamerlam®

(4.3)

Alog A ’
log Ay + 2172 {e” e 1}

h ed(e)yE ed(o)ZNIZN S —-Yy)- P Zn S -y
E(e*®%%|Sy <0) = /.S ( Pz, < —x))da:( )dy (4.4)
0 n = .

On — DdO0) + A

From (4.1), (4.2), (4.3), and (4.4) we obtain the ASN and OC functions,
and then the ARL by (1.1). In exponential case, we regard the values of
ARL obtained by Stadje(1987)’s method as a standard. This is because in
exponential case the SLAE method is not accurate on account of the discon-
tinuity of the kernel. However Stadje’s expressions are too complicated to use
in practice. In TABLE 2, the values of ARL by Stadje’s, the CBST, and the
proposed methods are obtained for some given boundaries(k’ = h(A; —1)) and
parameter value.

Generally the proposed method is not as accurate as the CBST in expo-
nential case. But, it may be noted that the proposed method will be helpful
in estimating the ARL, since this method gives the explicit form of the ARL
and still gives good approximations.
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5. CONCLUSIONS

In this paper, we consider the approximation for the ARL of the CUSUM
chart. Many techniques have been proposed for estimating the ARL because
their exact evaluations have been hopeless in general.

The two main approaches for estimating the ARL are numerical and ap-
proximation methods, which have their own advantages and disadvantages.
Numerical methods give accurate results such as Goel and Wu (1971), whereas
approximation methods are useful in evaluating the properties of the CUSU M
procedures and use less computer memory space in general. This is because
analytic expressions for characteristics of the procedure are available.

In this paper, the new method is proposed by using the conditional expec-
tation of Sy given Sy_;. One important fact in this method is to obtain the
asymptotic conditional density function of Sy_;. Applying the new method to
normal and exponential case, it seems to be successful in estimating the ARL.
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Table 1. Values of the ARL in normal case
0 SLAE CBST New
-1.00 1962.87 1975.17 2142.81
-0.75 442.80 430.06 456.84
-0.50 117.60 113.38 118.17
-0.25 39.47 38.32 39.35
h'=3 0.00 17.35 16.99 17.29
0.25 9.68 9.53 9.65
0.50 6.40 6.32 6.39
0.75 4.73 4.67 4.72
1.00 3.75 3.71 3.75
-0.75 9010.84 8744.65 9289.01
-0.50 930.93 898.76 934.97
-0.25 141.69 138.23 141.30
0.00 38.01 37.48 37.92
h'=15 0.25 17.05 16.89 17.02
0.50 10.38 10.29 10.36
0.75 7.39 7.34 7.39
1.00 5.75 5.70 5.74
1.50 4.01 3.97 4.01
-0.50 18983.32 18318.55 19047.46
-0.25 736.82 720.66 734.97
0.00 84.00 83.22 83.87
0.25 28.76 28.60 28.74
h'=8 0.50 16.37 16.29 16.36
0.75 11.39 11.34 11.39
1.00 8.75 8.70 8.74
1.50 6.01 5.97 6.01
2.00 4.62 4.58 4.62
-0.25 2071.87 2027.43 2066.60
0.00 124.66 123.71 124.50
0.25 36.71 36.55 36.68
h’=10 0.50 20.37 20.29 20.36
0.75 14.06 14.00 14.05
1.00 10.75 10.70 10.74
1.50 7.34 7.31 7.34
2.00 5.62 5.58 5.62
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Table 2. Values of the ARL in exponential case

X | Stadje | CBST | New
1 | 422.09 | 426.19 | 427.30
Ar=14 |1.1]179.58 | 180.69 | 180.94
1.2 | 98.06 | 98.46 | 98.54
h'=748925 | 1.3 | 64.38 | 64.58 | 64.61
14| 47.85| 47.96| 47.98
1 |676.02 | 685.04 | 687.84
M=16 |13 83.28| 83.63| 83.70
14| 58.00| 58.18| 58.21
B =652 | 15| 44.48| 44.59 | 44.61
1.6 | 36.42 | 36.50 | 36.52
1 | 342.15 | 348.65 | 351.06
M =19 |15| 38.08| 3820 38.24
1.6 | 30.86 | 30.93| 30.95
k' =4.09867 | 1.7 | 26.06 | 26.09 | 26.11
1.8 | 2270 | 2271 | 22.73
1.9 | 20.26 | 20.25] 20.27




