The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.877-883
/
2013
The quadratic inference functions (QIF) method proposed by Qu et al. (2000) and the generalized method of moments (GMM) for marginal regression analysis of longitudinal data with time-dependent covariates proposed by Lai and Small (2007) both are the methods based on generalized method of moment (GMM) introduced by Hansen (1982) and both use generalized estimating equations (GEE). Lai and Small (2007) divided time-dependent covariates into three types such as: Type I, Type II and Type III. In this paper, we compared these methods in the case of Type II and Type III in which full covariates conditional mean assumption (FCCM) is violated and interested in whether they can improve the results of GEE with independence working correlation. We show that in the marginal regression model with Type II time-dependent covariates, GMM Type II of Lai and Small (2007) provides more ecient result than QIF and for the Type III time-dependent covariates, QIF with independence working correlation and GMM Type III methods provide the same results. Our simulation study showed the same results.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.381-394
/
2016
그래피컬 모형은 변수들 사이의 조건부 종속성을 노드와 연결선을 통하여 그래프로 나타낸다. 변수들 사이의 복잡한 연관성을 표현하기 위하여 그래피컬 모형은 물리학, 경제학, 생물학을 포함하여 다양한 분야에 적용되고 있다. 조건부 종속성은 공분산 행렬의 역행렬의 비대각 성분이 0인 것과 대응하는 두 변수의 조건부 독립이 동치임에 기반하여 공분산 행렬의 역행렬로부터 추정될 수 있다. 본 논문은 공분산 행렬의 역행렬을 희박하게 추정하는 유사가능도 기반의 CONCORD (convex correlation selection method) 방법에 대하여 기존의 BCD (block coordinate descent) 알고리즘을 랜덤 치환을 활용한 갱신 규칙과 그래픽 처리 장치 (graphics processing unit)의 병렬 연산을 활용하여 고차원 자료에 대하여 보다 효율적인 BCDR (block coordinate descent with random permutation) 알고리즘을 제안하였다. 두 종류의 네트워크 구조를 고려한 모의실험에서 제안하는 알고리즘의 효율성을 수렴까지의 계산 시간을 비교하여 확인하였다.
In this paper, we propose a discriminative training algorithm for the stochastic segment model (SSM) in continuous speech recognition. As the SSM is usually trained by maximum likelihood estimation (MLE), a discriminative training algorithm is required to improve the recognition performance. Since the SSM does not assume the conditional independence of observation sequence as is done in hidden Markov models (HMMs), the search space for decoding an unknown input utterance is increased considerably. To reduce the computational complexity and starch space amount in an iterative training algorithm for discriminative SSMs, a hybrid architecture of SSMs and HMMs is programming using HMMs. Given the segment boundaries, the parameters of the SSM are discriminatively trained by the minimum error classification criterion based on a generalized probabilistic descent (GPD) method. With the discriminative training of the SSM, the word error rate is reduced by 17% compared with the MLE-trained SSM in speaker-independent continuous speech recognition.
멀티 에이전트(Multi-Agent)들이 상호 연동하여 공통의 목적을 수행하기 위해서는 에이전트를 관리하는 매니지먼트 에이전트(Management Agent)가 요구되고, 주어진 환경에서 획득한 제한된 지식을 효율적으로 이용하는 방법이 필요하다. 본 논문에서는 네이브 베이즈 이론을 적용하여 각 에이전트의 속성값(Attribute Value)에 따라 매니지먼트 에이전트가 각 에이전트를 효율적으로 관리할 수 있는 NBMA(Naive Bayes Management Agent)를 제안하고 이를 이용한 미팅 참가 결정 에이전트를 제안한다. NBMA는 고유한 속성을 지닌 여러 개의 하위 에이전트와 그들을 관리하는 매니지먼트 에이전트로 구성되어 있으며 매니지먼트 에이전트는 하위 에이전트들의 고유한 속성에 대한 메타지식을 이용하여 관리 하도록 한다. 하위 에이전트간에는 상호 조건부 독립(mutually conditional independence) 가정하에 복수의 속성값을 취하며 이러한 속성값에 따라 매니지먼트 에이전트가 조정과 의사결정을 하도록 한다.
An analytical performance model that can predict the performance of a superscalar processor employing multiple branch prediction is introduced. The model is based on the conditional independence probability and the basic block size of instructions, with the degree of multiple branch prediction, the fetch rate, and the window size of a superscalar architecture. Trace driven simulation is performed for the subset of SPEC integer benchmarks, and the measured IPCs are compared with the results derived from the model. As the result, our analytic model could predict the performance of the superscalar processor using multiple branch prediction within 6.6 percent on the average.
Maximum likelihood estimates (MLEs) for recursive models of categorical variables are discussed under an EM framework. Since MLEs by EM often depend on the choice of the initial values for MLEs, we explore reasonable rules for selecting the initial values for EM. Simulation results strongly support the proposed rules.
A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.
베이지안망(Bayesian network)은 다수의 변수들 사이의 확률적 관계(조건부독립성: conditional independence)를 그래프 구조로 표현하는 모델이다. 이러한 베이지안망은 비감독학습(unsupervised teaming)을 통한 데이터마이닝에 적합하다. 이를 위해 데이터로부터 베이지안망의 구조와 파라미터를 학습하게 된다. 주어진 데이터의 likelihood를 최대로 하는 베이지안망 구조를 찾는 문제는 NP-hard임이 알려져 있으므로, greedy search를 통한 근사해(approximate solution)를 구하는 방법이 주로 이용된다. 하지만 이러한 근사적 학습방법들도 데이터를 구성하는 변수들이 수천 - 수만에 이르는 경우, 방대한 계산량으로 인해 그 적용이 실질적으로 불가능하게 된다. 본 논문에서는 그러한 대규모 데이터에서 학습될 수 있는 계층적 베이지안망(hierarchical Bayesian network) 모델 및 그 학습방법을 제안하고, 그 가능성을 실험을 통해 보인다.
가입자가 스마트카드를 사용하지 않고, 자신의 ID와 패스워드만으로 유료 방송을 시청할 수 있는 새로운 위성 한정 수신시스템(Conditional Access System)을 제안한다. 본 시스템을 위해 가입자와 가입자관리시스템간의 세션키 분배 및 상호 인증을 행할 뿐 아니라, 암호화키(authorization key)를 다운로딩하는 두 개의 패스워드 기반 프로토콜을 제안한다. 제안하는 시스템은 몇 가지 장점을 갖는다. 우선, 기존의 시스템과 비교하여 가입자관리시스템의 암호화키-암호화 모듈을 제거하였고, 수신측의 암호화된 난수 발생 초기치-복호화 과정도 간략화하여 계산량을 줄였다. 둘째, 비싼 스마트카드 리더기(Card Adaptive Device)가 필요 없으므로 비용 절감의 효과가 있다. 셋째, 디스크램블러와 스마트카드가 일체형이었던 기존의 방식과는 달리 디스크램블러를 포함한 어떠한 TV 셋탑 박스를 통해서도 이용이 가능한 디스크램블러 독립성을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.