
21

Discriminative Training of Stochastic Segment Model Based on HMM 
Segmentation for Continuous Speech Recognition

* Yong-Joo Chung, and * **Chong-Kwan  Un

*Switching Division LG Information & Communications 
Ltd.

•* Communications Research Laboratory Department of Elec­
trical Engineering Korea Advanced Institute of Science and 
Technology
Manuscript Received 96. 8. 20

Abstract

In this paper, we propose a discriminative training algorithm for 나】e stochastic segment model (SSM) in continuous 
speech recognition. As the SSM is usually trained by maximum likelihood estimation (MLE), a discriminative training 
algorithm is required to improve the recognition performance. Since the SSM does not assume the conditional independence 
of observation sequence as is done in hidden Markov models (HMMs), the search space for decoding an unknown input 
utterance is increased considerably. To reduce the computational complexity and storage amount in an iterative training 
algorithm for discriminative SSMs, a hybrid architecture of SSMs and HMMs is proposed. In the method, the segment 
(phoneme) boundaries of N-best candidate sentences are obtained by a dynamic programming using HMMs. Given the segment 
boundaries, the parameters of the SSM are discriminativ이y trained by the minimum error classification criterion based on 
a generalized probabilistic descent (GPD) method. With the discriminative training of 나冷 SSM, the word error rate is 
reduced by 17% compared with the MLE-trained SSM in speaker-independent continuous speech recognition.

I. Introduction

HMM is now the most widely used tool for speech 
recognition. In most HMMs, observations in a slate are 
assumed to be generated independently and identically 
distributed. The assumption ignores the correlations that 
exist between the frames of speech signal. It is well-known 
that speech recognition perfonnance is enhanced by utilizing 
the frame-correlation information [1].

A stochastic segment model (SSM) is one of the appro­
aches that have been proposed to better model the spectral 
/temporal structure over the duration of a phoneme [2] 
|3]. The SSM deals with speech signal on a segment (pho­
neme) level rather than on a frame level.

SSMs are usually trained by maximum likelihood(ML) 
criterion. Maximum likelihood estimation (MLE) training 
maximizes the probability of observing training data 
given a mod이 corresponding to the data. But, it can not 
usually produce an optimal model that achieves minimum 
이assiflcation error rate in real environment due to model 
incorrectness and insufficient trainin흥 data and so on. In 
particular, enough observations of phonemes are required 
in the training data to r이iably estimate the parameters of 

the SSM since it is modeled on a phoneme level. Thus, it 
is difficult to obtain optimal models by the MLE training 
of the SSM.

In this paper, a discriminative training algorithm based 
on a GPD method [4] is suggested for the SSM. For the 
discriminative training of the SSM, one needs to have an 
iterative algorithm that first segments input utterances by 
dynamic programming, and then updates the parameters 
of the SSM to minimize 나｝e cost function for minimum 
error classification. But, unlike HMMs, SSMs do not 
assume the conditional independence of observation 
sequence and this increases the search space for decoding 
considerably. Particularly, for continuous speech recog­
nition, the amount of memory required as well as compu­
tation time is considerably increased in a network search 
algorithm for finding N-best candidate sentence hypoth­
esis [5].

To overcome the problems, we propose a discriminative 
training method for the SSM by using HMM-based seg­
mentation. In the method, phoneme boundaries of N-best 
candidate sentences are obtained by the HMM-based 
Viterbi decoding. Using the given phoneme boundaries, 
the parameters of the SSM are discriminatively trained by 
the GPD method.

This paper is organized as follows. In Section 2, we 
review and discuss modeling of the phonetic segments. In 
Section 3, the proposed scheme on discriminative training 
of the SSM is described. Section 4 presents our experimental 
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results on speaker-independent continuous speech recog­
nition with the SSM. Finally, in Section 5, conclusions 
are given.

U . Stochastic segment model

For the training of the SSM, it is first required to have 
phonetic segments each of which consists of a sequence of 
speech frames corresponding to a phonetic category. The 
phonetic segments may be obtained from manual segmen­
tation based on pronunciation dictionary of words or 
sentences, or they can be determined in an automatic 
training/recognition algorithm as was developed in |2]. 
Since, in this paper, we obtain the phonetic segments 
from the HMM-based Viterbi decoding, we o이y describe 
how to model the phonetic segments.

2.1 Sam 이 ing
The phonetic segments obtained from input utterances 

have variable length. But, it is often required to obtain 
fixed-length segments for successful speech recognition 
[2]. In this paper, we take a linear sampling approach 
without interpolation which has shown satisfactory results. 
The linear time sampling selects a fixed number of 
samples which are closest in time to the sampling times 
spaced at equal time-intervals in the original se응menls. If 
we consider an original segment of length L、X-{x] 
where x, is a k-dimensional vector, the sampling process 
results in a fixed-length segment of length A/, Y =(yi,-*-,yw)  
where y( e{x,，…,在}.

2.2 Multivariate Gaussian Mixture Model
A multivariate Gaussian mixture model may be assumed 

fbr the sampled segment Y. The observation density function 
for a sampled phonetic segment Y may be given as

/
P(Y|a) = Zc,wN(Y,麻，£,«) (1)

丨

where a represents a phoneme and cia is a mixture weight. 
7V(Y,阳小 is a Gaussian density with a mean vector
用a and a covariance matrix £诟 corresponding to the z-th 
mixture of the phoneme a and I represents the number of 
mixtures for a phonetic segment. The dimension of Y is 
XM which is very large for moderate sizes of k and M. 
This large dimension makes it difficult to pliably estimate 
the full covariance matrix due to insufficient training 
data. Thus, it is usually assumed that samples in a segment 
Y are independent of each other. Although the above 
assumption simplifies the estimation of the covariance 

matrix, it does not fully take advantage of the merit of 
segment structure which models correlation between samples. 
In order to compensate for the performance degradation 
which may res니t from the simplification, we can use an 
additional representation which contains the information 
on dynamics of the sampled segment Y. This can be 

represented as Y = { y 丨，…，y “_]} where y； = yl + i -y,-. In 
this paper, we use diagonal covariance matrices for the 
samples in a phonetic segment since it may be difficult to 
reliably estimate the full covariance matrices of a mixture 
Gaussian density function with limited training data.

HI. Discriminative training of SSM

For the discriminative training of the SSM based on 
the GPD method, an iterative algorithm that segments 
each input utterance in the training set conditioned on 
the assumed models is required. Here one should note 
that an automatic segmentation algorithm by the SSM 
can have a problem.

For each time t, the score of each phoneme model 
must be computed over the possible phoneme duration. 
Thus, the computational complexity is increased propo­
rtionally to the product of the number of phoneme 
models and the maximum duration of phonemes. Particu­
larly, for continuous speech recognition using a grammar 
(e.g., finite state network), the accumulated likelihood 
and durational information of the best path to a node 
corresponding to a phoneme in the finite state network 
must be preserved for a length in frames equal to the 
maximum duration of phonemes. This requires considerable 
increase in storage amount compared to the HMM-based 
search procedure where the temporal informations are 
needed only until the next frame. Thus, to lessen the bur­
den of the computational complexity and storage amount, 
we introduce a discriminative training method using 
HMM-based segmentation in this section.

3.1 System overview
A block diagram of the overall recognition system with 

discriminative training of the SSM using HMM-based 
segmentation is shown in Fig. 1. The discriminative train­
ing procedure can be divided into two parts. In the first 
part, the HMM is used to generate segmentation for 
N-best candidate sentences. We can efficiently find not 
only the N-best lists but also the segmentation for their 
phonetic segments by using a frame synchronous network 
search algorithm [5]. In the second part, the phonetic 
segments are rescored by the SSM and the SSM parameters
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Figure 1. Block diagram of the overall recognition system with 

discriminative training of SSM.

are adapted by a gradient descent method.
The score of an input utterance X, given a sentence 

hypothesis which consists of a phoneme sequence a = 
{o(i,a?} of length P, is expressed usin흥 a modified like­
lihood function as

S(X|a) = S(Y|a)그£ {1 이P(Y川视 • L{fi+C} (2) 

where Y represents a sequence of phonetic segments Yp, 
and S' (YI a) is written on the assumption the Y/s are 
independent of each other. L(p) is the length of p-th pho­
netic segment before sampling, and C is used to control 

phoneme insertion rate. By weighting the log-likelihood 
score by L(p), we can take into account the length of a 
phonetic segment before sampling. This is necessary to 
prevent from favoring larger segments, which will have a 
higher probability per input utterance.

Since the N-best lists are available, it is possible to 
compute the SSM score fbr each hypothesis. The recognized 
sentence is selected as the sentence among the lists which 
has the highest SSM score. In our proposed architecture, 
the time-consuming part for finding the segmentation 
information is replaced by the relatively simple HMM-based 
Viterbi decoding process which also requires much less 
storage amount. Many researchers used the 터MM-based 
segmentation information as a reliable substitute for elab­
orate manual segmentation results. From this fact, it is 
believed that possible incorrect segmentations for plionetic 
segments does not much worsen recognition performance.

3.2 Discriminative training of SSM
In this section, a discriminative training method based 

on the GPD algorithm is described for the SSM. To 
formulate an objective function of the discriminative 
training which approximates the number of error counts, 

two kinds of functions are defined. They are a discri­
minant function and a misclassification measure. For 
isolated word recognition, given an input utterance, a 
discriminant function g点 may be defined for each word 底 

k= 1V where V is the number of words in the voca­
bulary. For continuous speech recognition, the discriminant 
function can be defined for each candidate sentence. 
The candidate sentences are restricted to the N-bcst lists 
as shown in Fig. 1. The discriminant function for ^-th 
sentence is defined using the likelihood score of (2) as

g»(Y*,  A*)  = S(Y*|a*) 或:{ln[P(Y*  |a；)]・W)+C}⑶

-E {In [ £ Cy - n Ngf,乙m)] - £(z，)+c} (4) 

where the index p represents a phonetic segment in the k 
-th candidate sentence and the superscript on Y implies 
that the sampled segments of an input utterance depends 
on the corresponding sequence of phonemes ctk of each 
candidate sentence. A為 represents the mixture weights, 
means and covariances of the SSM associated with each 
sentence. The recognizer classifies an input utterance to c 
-th candidate sentence if argmax/ gi (Yz, A/).

The misclassification measure must represent the degree 
of misclassification of a recognizer. If an input utterance 
is given, a misclassification measure can be formulated as 
follows.

dc = -g°(Y。, A〉+ [島一「E g(Y', A,)']〒 ⑸

where gc represents the SSM score for the correct sentence 
and 〃 is a positive number which controls the contribution 

of candidate sentences in the misclassification measure. 
By varying the value of 〃，the degree of adjusting the 
parameters of the SSM corresponding to each candidate 
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sentence is determined. If we set equal to infinity, the 
misclassification measure becomes

<L= -g°(Y。, A。) +幻(丫七 A6) (6)

where b is the index of the candidate sentence which is 
most probable except for the correct sentence. The meaning 
of misclassification measure is clearer in this form 
because only the most probable incorrect sentence is 
compared with the correct one. But possible classification 
error pattern may not be fully taken into account.

For minimum error classification, an objective function 
should be determined so that it approximately represents 
the number of classification error counts. Among some 
possibilities, an objective function which is one of 
smoothed zero-one cost functions of the misclassification 

measure is used:

W)= ■荷-一7느二万 ⑺

where 7 is a constant which is used to control the 
smoothness of the cost function. Since the above function 
emphasizes correct classification with a slight margin as 
well as near misses, it is robust to mismatch between 

training and testing data.
Discriminative training is done by minimizing the 

objective function for all training sentences with respect 
to the parameters (mixutre weights, means and covariances) 
of the SSM. A GPD algorithm is used to adapt the 
parameters. Given an input utterance, the parameters are 

adjusted according to

A„ + | = A„ —E„ UVZC(^C) (8)

where U is positive definite matrix [이 and the step size 

sequence {&} satisfies i) G广수 00 and ii) £二【〈8.

In the adaptation, the gradient of the objective function 
with respect to SSM parameters is easily computed. The 
SSM parameters must satisfy certain constraints such as 
positiveness of the covariances and the requirement 
= 1, Ga 그 We first take logarithm of the parameters 
and adapt it by the gradient descent. After adaptation, we 
take exponent of the updated parameters and finally 
normalize them to satisfy the constraints and meanings 

[6].
The proposed discriminative training algorithm of the 

SSM is summarized as follows.
1. The initial paprameters of the SSM are determined 

by a maximum likelihood estimate from the set of 

sampled segments which are obtained by the HMM- 
based Viterbi decodin응 on the training data.

2. For each input utterance, N-best candidate sentences 
and their segmentations are obtained by a dynamic 
programming network search algorithm based on 
HMM.

3. The gradients of the objective function with respect 
to the parameters of the SSM are computed based 
on the segmentaton given in step 2, and the SSM 
parameters are adjusted with the computed gradients.

4. If steps 2 and 3 are done for all training sentences, 
convergence is checked by the recognition rate on the 
training data. The iteration is stopped if it converges ； 
otherwise, go to step 2.

IV. Experiments of speaker-independent 
continuous speech recognition

4.1 Task and baseline system
The vocabulary consists of 102 Korean words repre­

senting month, day, date and time. Many words in the 
vocabulary are very confusing with each other differing 
only in a small number of phonemes. 26 speakers uttered 
20-30 sentences to construct the training and testing set. 
Utterances by 16 speakers were used for construction of 
the training data in which there are 380 sentences and 
1245 words, and those by the other 10 speakers were used 
to form the testing data containing 231 sentences and 753 
words. Each utterance was low-pass filtered with a cut-off 
frequency of 4.5 kHz and digitized with a sampling rate 
of 16 kHz. Twelve LPC ccpstral coefficients plus energy 
for each 10 ms frame of speech were produced. In ad­
dition to these 13 coefficients, their derivatives were 
prod나ced giving 26 coefficients per frame. We chose the 
phoneme as the basic subword 니nit, 28 phonemes were 
used in our experiment and this phoneme set is similar to 
the one originally used at KAIST[7],

4.2 Results of the MLE-trained SSM
In this paper, the number of samples in a phonetic seg­

ment was determined as 10, and each sample is 
represented by a 13-dimensional vector consisting of 12 
ccpstral coefficients plus energy. The samples are assumed 

independent and each of them is modeled by a multivariate 
mixture Gaussian density function with diagonal covari­
ance matrices. In addition to the original phonetic seg­
ment, we also used another representation which considers 
differences between neighbouring samples.

For decoding in the experinicn s, we used ” .mile slate
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Table 1. Word(sentence) error rates (%) of the MLE-trained 

SSM ((a)：Using only orginal segment representation； 

(b): Add a new feature representing the differences 

between samples.

No. of 

mixtures

(a) (b)

Testing set Training set Testing set Training sei

1 29.2(67.5) 22.0(60.5) 21.2(51.5) 18.2(51.8)

2 26.8(66.6) 17.9(48.6) 19.1(48.9) 14.2(40.5)

3 26.8(62.7) 15.2(42.3) 18.3(45.8) 11.6(33.4)

4 26.1(63.2) 14.6(42.1) 18.5(47.1) 10.4(30.0)

Table 2. Word(sentence) error rates (%) of the discriminatively 

trained SSM.

No. of mixtures Testing data Training data

1 16.3(41.9) 5.3(15.7)

2 16.0(40.2) 3.4(9.2)

3 15.1(35.9) 2.3(6.0)

4 15.6(37.6) 1.9(5.0)

MLE-trained SSM 18.5(47.1) 10.4(30.0)

network(FSN) grammar with a perplexity about 30. A 
frame synchronous network search algorithm based on 
HMM was used to find the N-best candidate sentences as 
well as their segmentations. The candidate sentences were 
rescored by the SSM to find the correct hypothesis based 
on the segmentations. We empirically determined the 
number of candidate sentences N, to be 5 because the 
correct sentence was almost always included in the top 5 
candidate sentences. With N larger than 5, computation 
time increased without improving recognition perform­
ance.

In Table 1, we show the recognition results of the 
MLE-trained SSM as the number of mixture components 
is varied. First, the res니ts using 이ily the original segment 
representation are shown. The word (sentence) error rates 
(%) for the training data decrease as the number of mix­
ture components increases. However, for the testing data, 
the recognition rate degrades with more than 3 mixture 
components. This may be due to the decrease in gene­
ralization of Gaussian mixture model for the SSM. Next, 
the results are shown when the representation employing 

the dynamics in the original segments is also used. The 
variation of the recognition error rates with the number 
of mixture components is similar to the first experiment. 
Comparing the two cases, we can see that remarkable 
performance improvement is achieved by using the 
dynamic representation. In particular, the word error 
rates are reduced by 28% and 41% for the training and 
testing data, respectively, when the number of mixture 
components is 4.

4.3 Results of discriminative training of the SSM
To improve discrimination of the SSM, a discriminative 

training for minimum error classification based on the 
GPD method was performed. The initial SSM was 
obtained from the MLE-training. The result is shown in 
Table 2. The adaptation of the parameters of the SSM 

was done after each training sentence. The incorrect sen­
tence with the best likelihood score was only considered 
for the misclassification measure in (6). In the GPD 
method, we used & as

where T is the value obtained by multiplication of the 
maximum number of iterations and the number of whole 
training sentences. is a small positive number and n is 
increased by 1 after each sentence. One iteration is for the 
whole training data set which consists of 380 sentenoss. 
The maximum number of iteration was fixed at 10.

With the discriminative training, we could observe 
improved recognition rates compared with the M LE-trained 
SSM in Table 1. Especially, the improvement is signifi­
cant for the training data, reducing the word (sentence) 
error by 81% (83%). For the testing data, the best result 
was obtained when the number of mixutre components 
was 3 and the word (senteene) error rate was reduced by 
17.0% (21.6%). The less improvement in the testing data 
may be due to characteristic of discriminative training 
which specifically increases recognition rate on training 
data. Also, since SSMs deal with speech signal on a pho­
neme level, the insufficient training data may degrade the 
generalization of discriminatively trained models. Although 
not reported in this paper, we also experimented using 
the mis이assification measure in (5) instead of (6) to take 
into account multiple candidate sentences. But, the improve­
ment was marginal, possibly due to the fact that we 
employ a cost function in (7) which is robust to mismatch 
between training and testing data.

V. Conclusions

In this paper, we proposed a discriminative training 
algorithm to improve the recognition performance of an 
MLE-trained SSM. In the method, a hybrid architecture 
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of SSMs and 니MMs was employed to reduce the 
computational complexity and storage amount in an iter­
ative training algorithm for discriminative SSMs. The 
likeliliood scores of the SSM were obtained based on the 
segmentation information from the HMM. In order to 
model the correlation between samples in a phonetic seg­
ment, the differences between adjacent samples were used 
also as features. The use of the additional features improved 
the recognition rates considerably. For discriminative 
SSMs, a discriminative training algorithm based on the 
GPD method was performed using the N-best candidate 
sentences obtained from an HMM-based network search 
procedure. With the discriminative training of the SSM, 
the recognition rate was increased significantly compared 
with the MLE-trained SSM.
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