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ABSTRACT

Maximum likelihood estimates(MLEs) for recursive models of cat-
egorical variables are discussed under an EM framework. Since MLEs
by EM often depend on the choice of the initial values for MLEs, we
explore reasonable rules for selecting the initial values for EM. Simu-
lation results strongly support the proposed selection rules.

Key Words : Conditional independence; Curved exponential family;
Experts’ opinion; Hyperplane of estimates; Guided selection; Model structure;
Order-distortion; Probability interval.

1Department of Statistics, Pusan National University, Pusan, 609-735, South Korea.

2Basic Sciences Division, Korea Advanced Institute of Science and Technology, Daejon,
305-701, South Korea.

3Research Institute of Information and Communication, Department of Statistics, Pu-
san National University, Pusan, 609-735, South Korea.



26 MiSook Jeong, SungHo Kim and KwangMo Jeong

1. INTRODUCTION

This paper presents an approach to the iterative computation of the MLEs
for graphical models of categorical variables, some of which are latent satis-
fying some assumptions. For continuous variables, structural equation mod-
els(Bollen, 1989) are one of the most generic terms. If it is for finitely dis-
crete or categorical variables, we may well consider probabilistic influence
diagrams(Oliver and Smith, 1990), Bayesian networks(Pearl, 1988), graphi-
cal log-linear models(Fienberg, 1980 and Whittaker, 1990), and each family
of models being suitable to use under certain circumstances of the relation.

Methods of fitting the structural equation models are well developed, al-
though not complete. Joéreskog and Sorbom’s(1986) LISREL and Bentler’s
(1985) EQS are most popular software packages for such models. For categor-
ical variable models, the Iterative Proportional Fitting(IPF) algorithm and
the Newton-Raphson algorithm are well known for fitting hierarchical log-
linear models. Model fitting methods for hierarchical log-linear models are
well established(Bishop, Fienberg, and Holland, 1975 and Agresti, 1990). An
IPF algorithm for fitting the probabilistic influence diagrams(IDs) of categor-
ical variables is considered in Kim(1997). While undirected graphs are used
for graphical log-linear models, we use directed acyclic graphs for recursive
models(Lauritzen and Wermuth,1983). Maximum likelihood(ML) estimation
for recursive models is a simple matter if the data are complete, i.e., all the
variables involved are observed. However, if a recursive model contains latent
variables, the ML estimation may not necessarily be as simple as with com-
plete data. When data are incomplete for recursive models, we will apply an
EM algorithm for estimation.

The ideas underlying an EM algorithm have been presented in special
cases by many authors. Dempster, Laird and Rubin(DLR)(1977) introduced
the EM algorithm for computing MLEs with incomplete data. The EM tech-
nique and theory are applied for finding the estimates in the ML framework
and the mode of the posterior distribution in a Bayesian framework. Each
iteration of the algorithm consists of an expectation step followed by a max-
imization step. In many cases the M-step can be performed with a standard
statistical package, thus saving us the programming time. But, because the
EM algorithm performs E-step and M-step after generating initial values for
the estimates, the initial values may affect the whole EM process. This phe-
nomenon has been reported in literature(Wu, 1983).

In this paper we will investigate how much the initial values affect the final
estimates in an EM process and propose useful rules for selecting appropriate
initial values.
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We now describe recursive models and variables that will be used in this
paper. Let us turn our attention to educational testing, where tests are
given to students in a paper-and-pencil format and each item is scored 0 or
1, 0 for an incorrect response and 1 for a correct response. In the field of
educational testing, it is well known that task abilities are causally related
to task performance(Greeno and Simon, 1988). When it comes to paper-
and-pencil tests, the task performance is given in the form of item response.
Thus we can say that item scores are influenced by states of the item-relevant
abilities. In this paper, we will also use binary variables to represent the
possession states of a given ability, 1 for the possession state and O for the
other state. Note that in most cases the ability states are not observable
and so that the abilities will be treated in the form of latent variables in this
paper.

In the recursive model, each node represents a variable, and we will use
the terms node and wvariable interchangeably within a model. The structure
of a recursive model is the relationship that can easily be represented by a
directed acyclic graph.

Figure 1.1 A recursive model.

Example 1.1 A simple example of the recursive models to be dealt with in
this paper is given in Figure 1.1. The nodes 1, 2, and 3 in circles are latent
variables denoting ability states of abilities 1, 2, and 3, respectively, and the
nodes 4, 5 and 6 in squares are item score variables of the items 1, 2, and
3, respectively. The states of abilities 1, 2, and 3 are represented by X, Xs,
and X3, respectively, and the scores of items 1, 2, and 3 by X4, X5, and X,
respectively.

The arrow between abilities represents a prerequisite relation, and the
arrow between ability and item score represents a cause-effect relation. When
there is no arrow between a pair of abilities, those in the pair are marginally
independent of each other. According to the graph in Figure 1.1, ability 1 is
prerequisite to ability 2, ability 1 affects item score 1, abilities 1 and 2 affect
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item score 2, and also ability 3 affects item score 3. But, Abilities 1 and 2
are marginally independent of ability 3.

The joint probability of the six categorical variables, X;,..., X¢, can be
expressed by

P(zy,...,x¢) = P(z1,z2)P(x3) P(z4|2z1) P(z5|21, 22) P(z6|3). (1.1)

Here P(X4 = 1|X; = 1) denotes the conditional probability that a randomly
chosen examinee with ability 1 answers item 1 correctly. Since X;, X5, and X3
are unobservable, we resort to EM to estimate the probabilities as appearing
in the right-hand side of (1.1).

This paper consists of 4 sections. In section 2, we descrive an EM al-
gorithm for finding MLEs of recursive models. And we briefly display the
sensitivity of the estimates by an EM algorithm to the selection of initial
values. In section 3, we propose some selection rules of initial values, and
the asymptotic distributions of the parameter estimates for recursive models
are presented. Merits of the proposal selection rules are described through a
geometric investigation of the initial values and the final estimates by EM. Fi-
nally, section 4 sums up the results of this paper and some further concluding
remarks follow in the section.

2. PARAMETER ESTIMATES FOR RECURSIVE MODELS

2.1 Recursive models

Consider a node which has at least one parent node. If the node does
not have any child node, we will call it a terminal node, otherwise a non-
terminal node. If a node is not connected to any other node in a graph,
we will call it an isolated node. Since estimation for an isolated variable is
equivalent to estimation for a single multinomial variable, we will consider
only the recursive models without isolated nodes in this paper.

Let a recursive model, say R, involve the categorical variables, X, ...,
Xk, where for 1 < L < K, the variables, Xr,y,..., Xk, are terminal
nodes and are conditionally independent given the first L non-terminal nodes.
In this paper, all the terminal nodes are observable variables and the non-
terminal nodes are latent or unobservable variables. Denote by w the index
set of X3,..., Xk, by ¢ the index set of X.1,..., Xx. We denote by ¢ and 6
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any nonempty subsets of w; ¢ for latent variables only, i.e, ¢ = {1,2,...,L}.
Xy denotes the row vector of X's indexed in 6. Let n be the sample size. For
notational convenience, we will write P(Xy = z4) = P(zy).

As for R, we denote by 6; the index set of variable X ,; and its parent
variable(s) and let ¢; = ¢ N 6;. Then if we let T = K — L, the probability
model of R is given by

P(z,) = P(zy) [] P(zs|zy.), (2.1)

i=1

where P(z,) are expressed in various formulae according to the probability
dependence structure of X, ..., X, which are latent variables. For instance,
as for the model in Figure 1.1,

P(z,) = P(z{1,2))P(x3)-

Let
m, = m(z,) = nP(z,)

denote the cell means of Xy, Xs,..., Xk at the cell-entry z, and my denote
the cell means of the (K — L)-dimensional contingency table of observables,
Xrt1y o, Xk

For the recursive model, the marginal and conditional probabilities on
the right-hand side of equation (2.1) are parameters where the conditioned
variables only are observable. The probability model of the recursive model
of categorical variables pertains to the exponential family, and the MLEs for
the recursive model are obtained without difficulty. The likelihood function
of a recursive model is expressed as the likelihood function of a multinominal
distribution model if the parameters are regarded as the cell means. But if we
take the parameter space as consisting of marginal or conditional probabili-
ties, the likelihood function for complete data is given in Lauritzen(1995). As
for a recursive model of K categorical variables, the log-likelihood function is
given by

MP) = D n(z.)(XlogP(zilzs,))

i€w

= Y. n(zs,)logP(z;|zs,),

i€w 30,-

where n(zg) is the number of the cases that fall into the category zs.
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The MLEs for the model (2.1) are given by

~

. m
P(z,) = Tlp
and A
mgi

P(zg,|z,,) = —2,
( 0.| w‘) ’fh<p.~
where 7, 1hg,, and m,, denote the MLEs of the cell means of the frequency
tables of X,,, Xy,, and X, respectively. The degree of freedom for the Pearson
x? statistic is
K

2t 1 %ok,

i=1

where ¢; is the number of the parent nodes of variable X;.

2.2 EM algorithm for recursive models

An EM process for a recursive model of categorical variables goes as fol-
lows.

STEP 1 : Generation of the initial values.
The initial values (%) for the cell means of the frequency table of
X, are generated under the structure of a given recursive model.

STEP 2 : Likelihood maximization using the initial values.
The initial values (%) are used for obtaining new estimates )
via likelihood maximization. () are obtained via

Tm)
e I 2

Mg

STEP 3 : E-step.
The missing cells, which are due to latent variables, are filled in.
For this filling-in, the observed cell frequencies ny4 and the current

estimates 7n(") that are obtained at the preceding M-step are used.
The E-step yields

,rh(r—}-l)
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STEP 4 : M-step.
The new estimates 7n{"*2) are obtained by likelihood maximization.
The M-step yiels

42 _ (1) Ty Ty

5 (r+2) 5, (r+1 i

My = mi [] g5 (2.3)
i=1 My,

Steps 3 and 4 make one cycle of the iteration.

STEP 5 : Convergence.
Steps 3 and 4 are repeated until convergence takes place. The
stopping rule is to stipulate when cycle-to-cycle changes are small
enough. For some small number ¢, we stop the iteration when
|+ — m{)| < e. In this paper we took 0.001 for . The MLEs
for the marginal and conditional probabilities are computed from
the final estimates 7h, of the cell means.

2.3 Sensitivity of the estimates by the EM algorithm

As mentioned by Wu(1983), estimates from EM are often subject to the
initial values used. In this subsection, we will investigate, confined to the
four basic structures as in Figure 2.1, possible influences of the initial values
upon the final estimates. It may sound senseless to mention basic structures
for recursive models, since there are infinitely many different structures of
the model. But to get an insight into the influence of the initial values, we
will focus on the simple structures such as those in Figure 2.1 and call them
“basic” structures. These structures involve at most 4 variables, where the
numbers of latent and observable variables are half and half, respectively.

In basic structure 1, X; and X, denote the ability and the item score
variables, respectively. On the other hand, in basic structure 2 through basic
structure 4, the first two variables X; and X, denote the ability states and
the other two variables X3 and X, item scores.

In the simulated example below, the sample size (n) is 500,000 and the
stopping criterion (¢) of EM is 0.001.
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basic structure 1

RN

basic structure 3 basic structure 4

Figure 2.1. Four basic structures of recursive models. Circles
denote ability state variables and boxes item score variables.

6] 8] 9]
Figure 2.2. Model 1. Basic structures 1, 3, and 4 are nested therein.

Example 2.1 We assume that X; through X5 are latents and X¢ through
X, are item score variables. The 10 variables are all binary. We will call
the model in Figure 2.2 Model 1. Basic structures 1, 3 and 4 are nested
in the model. As for Model 1, there are 20 parameters to estimate, which
are P(X1 = 1), P(X2 = 1), P(X3 = 1), P(X4 = 1‘X3 = .’L‘3),.’E3 = 0,1,
P(X5 = 1), P(_Xa = 1|X1 = .’Dl),(L‘l = 0,1, P(X7 = 1|X1 = .'El,Xz =
.'IJg),.'L‘l = 0,1,332 = 0,1, P(Xg = 1|X3 = 1173),.’133 = O,]., P(Xg = 1|X3 =
z3, X4 = 14),2z3 = 0,1,24 = 0,1, and P(X;o = 1|/ X5 = x5),z5 = 0,1. Since
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only 5 variables are observable, the degree of freedom for the Pearson y?
statistic is 11.

We let w = {1,2,...,10}, ¢ = {6,7,...,10}, ¢ = {1,2,...,5}, 6, =
{1,6}, 02 = {1,2,7}, 03 = {3,8}, 94 = {3,4,9}, and 95 = {5, 10} The
structure of Model 1 implies that X;, X,, X3, X5 are marginally independent
of each other, that X, is dependent on X3, that X, ..., X9 are conditionally
independent given X,,..., X5, that X; depends on X; and X,, that X,
depends on X3 and X4, and that X¢, X3 and X9 depend on X;, X3 and X,
respectively.

We assume for this example that the item score variable for item i is
denoted by X5, for i = 1,...,5 and that the proportion correct of item i by
Xits.

Table 2.1 shows the MLEs via EM when the proportions correct of items
are Xg = .730, X7 = .344, Xy = 822, Xy = .762, and X4 = .399.

In Table 2.1, P and P denote the actual probabilities and the initial
values for their estimates, respectively. The probability estimates P are MLEs
via EM. The actual probabilities are from Kim(1994). And the MSE(P)
is the mean squared error of P obtained through 100 replications with the
sample size 100,000 for each replication. An asterisk(x) is attached to the
ineffective estimates, not belonging to the probability interval(to be explained
in subsection 3.4) at the significance level 0.05. As Table 2.1 shows, the MSEs
of the estimates, when the initial values are chosen randomly, are relatively
large. This indicates that the estimates by EM are largely dependent on the
initial values. Thus we ought to be cautious in selecting the initial values.

3. GUIDED SELECTION FOR INITIAL VALUES

This section presents a guideline for selecting the initial values and consid-
ers the asymptotic distribution of parameter estimates. Using the asymptotic
distribution, we will explore appropriate rules for selecting the initial values.

Before setting off towards the rules, we will have a look into the geometry
of EM as applied to recursive models of categorical variable. The E-step is
implemented through expression (2.2). Once implemented, the new estimates
m{+1) satisfy that

fngﬂ) = Ny.
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Table 2.1. Actual probabilities and estimated probabilities for Model 1.

P PO P MSE(P)

P(X: =1 896 500 554° 1182
P(Xs = 1)X; = 0) 100 .300 .497*  .1621
P(Xs =1|X, =1) 801 950 .917*  .0127
P(Xy=1) 400 500 472 0052

P(X; =1|X1 =0,X,=0) .000 .001 .004*  .0000
P(X:=1/X;=0,X,=1) .098 .200 .470*  .1406
P(X;=1]X1=1,X,=0) .101 .200 .108  .0000
P(X;=1]X1=1,X,=1) .797 .900 .814  .0003

P(X3=1) 900 .950 .855 0021
P(Xs = 1| X3 = 0) 106 .200 .096 .0001
P(Xs =1|X;3 =1) 901 .990 .945 .0020
P(X, = 1|X5 = 0) 851 .500 .555*  .0865
P(Xs=1|Xs=1) 898 .900 .864 0012

P(Xe=1|X3 =0,X,=0) .000 .100 .173*  .0297
P(Xe=1|Xs=0,Xs=1) .206 .400 .550°  .1205
P(Xo=1|Xs=1,X4=0) .200 .500 .333*  .0177
P(Xo=1|Xs=1,Xs=1) .899 .950 .904  .0000

P(X5=1) 398 800 .574*  .0302
P(X10 = 1| X5 = 0) 100 .100 .026 .0056
P(X10 = 1|X5 = 1) 850 .900 .676*  .0297

NOTE: An asterisk () is attached when P is not contained in the corresponding
probability interval at the significance level 0.05.

That is, when the new estimates are marginalized on Xy, the marginals are
the same as ny. This means geometrically that the points {ml+Y(z,)} in
the space of [0,1]2" 1 lie in the hyperplane H; given by

Hy = {my(x,); mg(z4) = ny(zy) for all possible configurations z4}.

On the other hand, the M-step is carried out through expression (2.3).
m{*2) is defined in terms of as many factors as appearing in the right-hand
side of (2.3). The factors can be in the form of marginal or conditional
probabilities. The marginal ﬁzfp’“) can be further factorized according to the
structure of X,. We know that a model structure that is expressed in terms
of conditional independence relationship implies a constraint for {m,}. A
good example is given in section 2.7 of Bishop, Fienberg, and Holland(1975).
As for our recursive models, the relationship among X, is fully representable
via directed acyclic graph. For instance, as described in Example 2.1, we
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can read a variety of marginal or conditional independencies from Figure
2.2. These independencies restrict the set {m,} into a hyperplane where the
independencies are satisfied. Interested readers are refered to Figure 2.7-3
in Bishop et al(1975, p.53) for a hyperplane of independence of two binary
variables. For convenience’ sake, we will denote by H, the hyperplane that
satisfies the independence relationship among the variables in X, of a given
recursive model. Then the estimates m{*+!) in expression (2.3) from an M-
step must lie in the hyperplane H,.

Therefore, the final estimates from an EM algorithm should be contained
in H; N H,. Visualization of H; N Hz is impossible when the K-dimensional
contingency table contains 5 cells or more for which the cell means are to be
estimated.

The EM problem is an optimization problem for the likelihood function
where the domain of the likelihood function is confined to H; NH,. Whether
the final estimates {7h,} from an EM are the global maximum point of the
likelihood function or a local maximum point depends on the shape of the hy-
perplane H;NHz, which is hard to visualize or analyze when it is of dimension
4 or higher.

It is important to note that the recursive model of categorical variables be-
longs to a curved exponential family in general. The natural parameter space
is of the cell means of X, and the cell means are obtained through a joint prob-
ability model such as in expression (2.1), where each marginal or conditional
probability on the righthand side is a parameter. Fisher(1925) classified such
a model as belonging to a curved multinomial family. Efron(1978) explored
the relation between data point and parameter space confined to (curved)
exponential families. He showed that the MLE point is located at a point in
the parameter space which is closest, under some condition, to the data point.
Our problem here is that we can hardly figure out the shape of H; N H,.

Thus it is desirable to try several different initial points for EM and choose
the best among the sets of the final estimates {2, } as maximum likelihood
estimates. The “best” is in the sense that the value of the Pearson chi-square
statistic is the smallest among the several sets of final estimates from EM.
Note that the log-likelihood function is concave and the Pearson chi-square
statistic is convex in the estimates and so that the set of estimates which
give the largest value to the log-likelihood function give the smallest value to
the Pearson chi-square statistic. As aforementioned, it is hard to see if the
“largest” value is the global maximum value, when H;N#H; is hard to analyze.
This is why we should exercise our discretion so that the initial values might
fall within a reasonable range, when the model is relatively complex. The
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“best” estimates are, in this respect, an outcome of the mixture of the model,
data, and the discretion, which we will elaborate on in the rest of the paper.

3.1 Useful rules for selecting the initial values

Given a recursive model of abilities and item scores, we aim to find the
marginal and conditional probabilities of abilities as well as the conditional
probabilities of item scores given abilities. Because ability variables are latent,
we use the proportions correct of items in selecting some reasonable initial
values. In the rest of this subsection, we will derive, confined to the four basic
structures, useful results for selecting reasonable initial values.

Theorem 3.1. (For basic structure 1) Assume that X; and X, are
related as in basic Structure 1 and suppose that

P(Xz = 1|X1 = 1) Z 11, P(X2 = 1|X1 = 0) _<_ x10 (31)
for real constants aqp and ay; with 0 < a3 < @33 < 1. Then we have
I<P(X;=1)<u, (3.2)

where

P(X;=1)=P(X; =X, =0) ,

U = min
( aq1 — Qo

)
P(X2 = 1) — 10

Il = maz ,
(P(X2 = 1|X1 = 1) — Q10

Proof. The probability of a correct response to item 1 is
P(X;=1) = PXi=1PX,=1|X;=1)
+ {1 - P(X; =1)}P(X,=1|X; =0). (3.3)
From (3.1) and (3.3) follows the desired result. O
We may choose as an initial value for P(X; = 1) any value which satisfies

(3.2). In practice, we can consult experts for a’s in (3.1).

Remark 3.1. Under condition (3.1), the maximal value of (P(X; = 1)—ay0)/
(P(X2 = 1|X1 = 1) —am) is (P(X2 = 1) —am)/(an —am), and the maximal
value of (P(X2 = 1) - P(X2 = 1|X1 = 0))/(011 — am) is P(X2 = 1)/((111 —
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a10). Because P(X; = 1|X; = 1) and P(X, = 1|X; = 0) are unknown, we use
mm{P(Xz = 1)/(011 — 0110), 1} and maa:{(P(Xg = 1) — CY]_())/(O(H - O{m), 0}
instead of u and [ in (3.2), respectively, when we determine the initial value
for P(X]_ = 1)

Theorem 3.2. (For basic structure 2) Assume that X; through X, are
related as in basic structure 2 and suppose that

P(X3 = 1|X1 = 1) Z a1i, P(X3 = 1|X1 = O) S Q10 (34
PX4=1Xy=1) > an, P(Xs=1|X,=0) < az (3.5)
P(X, =1|X; =1) > P(X, = 1|X; = 0)

for real constants a;o and a;; with 0 < ay < a3 < 1,4 =1,2. Then we have
where for (i,k) = (1,3), (2,4)

P(Xp =1) — P(X; = 1|X; = 0)
a1 — Qo
P(Xk =1) — ay
P(Xk = 1|X, = 1) — a,-o’

u; = min(

1)

l; = max(

0).

Proof. The proof for P(X; = 1) is identical to that of Theorem 3.1. Since
the probability for a correct response to item 2 is

P(Xy=1) = P(Xy=1)P(Xs=1|X;=1)

this is also the same form as that of Theorem 3.1. This completes the proof
of the theorem. O

We may choose as initial values for P(X; = 1) and P(X, = 1) any values
which satisfy (3.7).

Remark 3.2. After dividing basic structure 2 into two probability models,

each having basic structure 1, the inequality (3.2) can be applied to basic
structure 2.
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The initial values for the conditional probability P(X,|X;) in basic struc-
ture 2 will be selected according to Remark 3.3. The probability P(X; = 1)
is represented as

P(X;=1) = P(Xi=1P(X,=1|X; =1)
4 {1-P(X; = 1)}P(Xa = 1|X; = 0). (3.8)

Remark 3.3. Let X; and X, denote the state of abilities 1 and 2, respectively.
Then we may safely assume

So from (3.8), follows that
P(Xs=1|X; =0) < P(X; =1) < P(Xy = 1|X; = 1). (3.9)

After determining values for PO (X; = 1) and PO (X, = 1) in such a way
that (3.7) is satisfied and by consulting experts for PO(X, = 1]X; = 1), the
initial values for P (X, = 1|X; = 0) is determined from (3.8).

Theorem 3.3. (For basic structure 3) Assume that X; through X, are
related as in basic structure 3 and suppose that

P(X3=1X1=1)> oy, P(X3=1X;=0) <oy (3.10)

PXy=1X1=1,Xa=1) =02
P(X4 = 1|X1 + X2 = 1) = Q91 (311)
P(X4 = I‘Xl = 0,X2 = 0) = 99

for real constants ayo and oy with 0 < a3 < @17 < 1 and for real constants
Qiog, 21 and Q99 with Qo0 S Qo1 S Q9. Then we have

where
X:=1)—-P(X5=11X;=0
u; = min(P( s=1) alfi ;10 X ), 1)
I, = max( P(Xs =1) — o0 0),

P(X3 = 1|X1 = 1) —0110,
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and
ly < P(Xy=1) < uy, (3.13)

where if Qg — 20(21 + gy 2> 0, then

P(X4 = 1) - 11(021 - azo) — Qg

Uy = Min
2 (0421 + Uy (g2 — 2021 + i) — o’

1)

P(Xy=1) —ui(ag — az) — axn

Iy, = max( 0)

})
Qg + ur(age — 2aa; + a20) — Qg

and if oy — 2091 + g9 < 0, then {; and u; in denominators for u, and I, are
interchanged.

Proof. See Appendix.

We may choose as the initial values for P(X; = 1) and P(X, = 1) any
values which satisfy (3.12) and (3.13), respectively.

Theorem 3.4. (For basic structure 4) Assume that X; through X, are
related as in basic structure 4, suppose that

P(X,;=1|X;=1) > P(X, = 1|X; = 0). (3.14)
And also suppose (3.10)and (3.11). Then we have
L<PX;=1)<uw, i=12, (3.15)
where u; and [;, ¢ = 1,2 are identical to those of Theorem 3.3.

Proof. See Appendix.

We may choose as the initial values for P(X; = 1) and P(X, = 1) in basic
structure 4 any values which satisfy (3.12) and (3.13), respectively. Also, the
initial values for P(X, = 1|X; = 1) and P(X; = 1|X; = 0) are determined
as suggested in Remark 3.3.

3.2 Applications of the proposed selection rules

Applying the results derived in this subsection, we may obtain the rea-
sonable initial values for the marginal probabilities and the conditional prob-
abilities for the basic structures. We will call by “the guided selection(GS)”
the selection which is implemented according to the results in this subsec-
tion; otherwise, we will call it “an unguided selection(UGS).” Because a GS
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is dependent on a’s, the opinion of experts plays a crucial role in applying
a GS.

Remark 3.4. The initial values for ayp and a3 may be recommended as
in the table below corresponding to the proportion correct of item 1, X,
when the item score variable X, depends on the latent variable X as in basic
structures 1 and 2. This table of recommendation does not stand on by
a theoretic ground but is obtained by experience or experts’ opinions, and
in the subsequent examples in this paper this table will be used. This table
could change case by case and according to experts’ comments or suggestions.
This table is simply an illustraction of how we select initial values for aj9 and
oy, with regard to basic structure 1.

(0) (9)

X2 0 Qg
>.90 >.95 <.30
>.75 >.90 <.20
>.50 >.85 <.10
<50 >.80 <.05

Remark 3.5. The initial values for asg, a21 and o, may be recommened
as in the table below corresponding to the proportion correct of item 2, X4,
when the item score variable X, depends on the latent variables X; and X,
as in basic structures 3 and 4. This table is a simple suggestion for ay, 021,
and ago with regard to basic structures 3 and 4.

Xo  off off oy
S 70 >.90 <.40 <.15
> .40 > 8 <30 <.10
<40 >.80 <.20 <.05

When the experts’ opinions are not available, we may select the initial
values for a’s as recommended in Remarks 3.4 and 3.5. For example, if the
proportion correct of the item corresponding to X, in basic structure 1 is
equal to 0.7, we may choose, by Remark 3.4, any initial values aﬁ) and ag%)
so that aﬂ) > 0.85 and ag?)) < 0.10 are satisfied. And if the proportion correct
of the item corresponding to X, in basic structure 3 is equal to 0.5, we may
choose by Remark 3.5 any initial values agg), ag(i) and aé%) so that ag;) > 0.85,

agi) < 0.30 and ag%) < 0.10 are satisfied.
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When we apply the EM algorithm with improper a’s, ‘order-distortion’
or ‘abnormal situation’ may occur in the estimates. In terms of conditional
probability, we say that an order-distortion takes place if

P(X1=1|X1 =IL'1,“-,Xk=IL'k) >P(X1=1|X1 lel,'-',szl‘;c)

when z; < z; fori=1,...,k and z; < 2 for at least one j,1 < j < k.
We will now return to the example in Section 2 to illustrate some simple
applications of the results of the previous subsection.

Example 2.1(Continued) We consider estimating the parameters of Model
1 in Figure 2.2. We will determine the initial values for the conditional proba-
bilities a’s of the item score variable given latent variables based on Remarks
3.4 and 3.5. The selection results are summarized below.

e X;=0730 : ol =085 a{” =0.079
The selection interval for P(X; = 1) is

0.844 < P(X; = 1) < 0.947. (3.16)

X, =0344 : o =080, a” =0.10, of = 0.001 and (3.16)
The selection interval for P(X,; = 1) is

0.373 < P(X, = 1) < 0.428. (3.17)

e X:=0822 : 0¥ =090, a =0.10
The selection interval for P(X3 = 1) is

0.903 < P(X;5 = 1) < 1.000. (3.18)

Xy =0762 : o =090, ol” =0.20, of” = 0.001 and (3.18)
The selection interval for P(Xy = 1) is

0.803 < P(X4 =1) < 0.892. (3.19)

e X10=039 : o =080, 0 =0.01
The selection interval for P(X5 = 1) is

0.492 < P(X5 = 1) < .505. (3.20)

From the selection intervals (3.16) through (3.20) we picked the values
0.86, 0.40, 0.92, 0.85, and 0.50 as the initial values for P(X; = 1),i=1,...,5,
respectively. Table 3.1 shows the estimates by a GS. By Table 2.1 and Table
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3.1, we know that MSE(P)s of the estimates by a GS are smaller than those
by an UGS. O

In this example, the estimates under a GS look more efficient than those
under an UGS. Though it is complicated to determine the initial values under
a GS, the GS seems to produce better estimates than the UGS.

3.3 A geometric investigation on the selection of initial values

In this subsection, we restrict our attention to basic structure 1 in Figure
2.1 and to investigate geometrically the efficiency of estimates under a GS.
For notational convenience, we let ; = P(X; = 1), 62 = P(X, = 1|X; = 1)
and 83 = P(X; = 1|X; = 0). We will consider a graph of 6, and 6, with 63
fixed at 0.1.

Table 3.1. Actual probabilities and probability estimates
for Model 1 under the Guided Selection.

GS
p PO P MSE(P)

P(X; =1) 806 .860 877 .0003
P(Xe = 1|X, =0) 100 .079 .085 .0002
P(Xs = 11X, = 1) 801 .850 .820 .0003
P(Xy =1) 400 400 .402 .0000
P(X7;=1|X; =0,X,=0) .000 .001 .003*  .0000
P(X;=1X; =0,X,=1) .098 .100 .231 .0181

P(X7=1X; =1,X,=0) .101 .100 .09 .0000
P(X:=1X;=1,X,=1) .797 .800 .797 .0000

P(X3=1) 900 .920 .909 .0001
P(Xs = 1| X3 = 0) 106 .100 .073 .0010
P(Xs =1|X3 = 1) 901 .900 .896 .0000
P(X, = 1|X5 = 0) 851 .735 .789 .0039
P(Xs=1|Xs =1) 898 .860 .869 .0008
P(Xs=1/X; =0,Xs=0) .000 .001 .008°  .0001
P(Xo=1|X3=0,Xs=1) .206 .200 .171 0011
P(Xo=1|X3=1,Xs=0) .200 .200 .226 .0008
P(Xe=1]X3=1,Xs=1) .899 .900 .914 .0002
P(Xs = 1) 398 .500 .467 0047
P(X10 = 1|/ X5 = 0) 100 .010 .048 .0028
P(X10=1Xs = 1) 850 .800 .799 .0026

NOTE: A bullet (o) is attached when P is not contained in the
corresponding probability interval at the significance level 0.05.
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P(X, = 1) can be expressed as
P(X2=1) =616, + (1 — 6,)0;,
and so 6, is given by
6 = (P(X2=1)—63)/6, + 05.

Next we will have a close look at the location of the estimates by GSs and
UGSs.

Example 3.1 We will consider basic structure 1 where P(X; = 1) = 0.82
and compare the GS and the UGS in estimating 6; and 6, with 63 fixed to
0.1. The shaded area in Figure 3.1 is a Guided Selection Area(GSA). The
GSA is an area which represents selection intervals of ¢; under 0.1 < 6, <'1
and 93 =0.1.

Table 3.2 shows the MLEs corresponding to the GS and the UGS. In addi-
tion, Figure 3.2 shows the 3-dimensional graph of (6,, 62, 63). The MLE points
, , and |3| by the GSs are located near the actual value @' = (6y, 65, 0;)
= (0.9, 0.901, 0.106), but the MLE points [4], [5], [6] and [7] by the UGSs
are scattered around the actual values. O

Table 3.2. The MLEs § from the initial values 6 by the GSs and
the UGSs when P(X, = 1) = 0.8215 under basic structure 1. The initial
values for 65 is fixed to 0.1.

Point of
o0 ¢ 4, 6, 6 the Coordinates
97 85 960 844 .097
GS .92 .90 .913 .890 .094
87 .95 .857 .943 .090
30 .90 .659 .988 .497
UGS .70 .70 852 .908 .322
90 .70 .942 857 .229
30 .30 504 911 .729

[~ ][] oo =
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3.4 Asymptotic distribution for parameter estimates

3.4.1 The asymptotic distribution of the parameter estimates

This subsection presents the asymptotic theory of parametric models for
categorical data. The approach is well described in Rao(1973), Bishop, Fien-
berg and Holland(1975), and Agresti(1990). The following results are the
fundamental results of the large-sample model-based inference for categorical

data. The key tool is the delta method.

0
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0.0
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0.2 0.4 0.6 0.8 1.0

Figure 3.1. A GSA for (6,,6,) with 63 = 0.1.
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Figure 3.2. The 3-dimensional graph of (6;,6:,6s). The boxed labels are
as in Table 3.2. The actual point (e) of (6;,6,,63) is (.900,.901, .106).
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The data are counts (ny,...,ny) in N cells of a contingency table. The
asymptotics regard N as fixed and let n = ¥n; — oo. Suppose the cell counts
have a multinomial distribution with the cell probabilities 7w = (1, ..., 7N),
where V' denotes the transpose of the matrix on vecter V. Let p = (P1,...,pN)
denote the sample proportions, where p; = n;/n. The model relates 7 to a
smaller number of parameters 6 = (61, ...,6;)". We express it as 7 = 7(0),
and m;(@) denotes the function that relates parameters to m,t = 1,...,N.
We use € and 7 to denote generic parameter and probability values, and
0o = (610,...,6p) and wg = (my,...,7Nn0) = m(@y) to denote the true
values for a particular application.

Consider the asymptotic distribution of the MLE 8 of @ and the asymp-
totic distribution of the model-based MLE # = =(8). The kernel of the
multinomial log-likelihood is

N N
=log [[ m(0)™ =n Y p;log m:(6).
=1

i=1
Let A denote the N x ¢t matrix

[ —1/2(%;1) ] = Diag(mo) ™ /*(5=

800)
Then we obtain the important result
V(0 — 85) 5 N(0, (A'A)™Y),
where \/a(p — 7o) % N(0, Diag(m,) — woTh)

and
Va(d = mo) 4 N (0, () A A ).

3.4.2 Asymptotic distributions for basic structures

The asymptotic distribution of the MLE 8 of @ is given by
V(8 — 8,) 5 N[0, (4'A)™Y),

where 6 is the true value for a particular application. We consider only basic
structure 1 and basic structure 4.

basic structure 1
Let the cell probabilities for basic structure 1 be denoted by, for z;, z, = 0,1,

Mgr1zy = P(Xl =7, X2 = $2) = P(Xl = IL'I)P(Xz = $2|X1 = IDl)a
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where 3, 34, 7212, = 1. Then 8 and 7 are given as follows :

6, P(X,=1)
8, P(X,=1|X, =0)

Wooggg (1 —(—191)21)-9- 93)
T = w0 = 71'(1)(1,(0) . 6. (1 —1923
71'11(0) 6192
Then we obtain
610(1 — 610) 0 0
(AA) = ( 0 B20(1 — B20)/610 0 ) .
0 0 030(1 — 930)/(1 - 910)

basic structure 4
Let the cell probabilities for basic structure 4 be given by

Teiz3 — P(X1 = IL'1,X3 = 333) = P(X1 = xl)P(X;; = :L‘3|X1 = 1171),
Torzze = P(X1=121, Xy =172, X4 = 74)
= P(Xy =1z, X2 = 22)P(X4 = 24| Xy = 11, X2 = 72),

for z; = 0,1, 1 = 1,2,3,4, where Yo, 3p. Mayzy = Loy Lozp duzy Forzazs = 1.
As T4z, is similar to basic structure 1, consider 7y, 4,2, only. Then 6 and 7
are given as follows :

(91\ ( PX,i=1,X,=1) \

0, P(X,=1,X,=0)
65 P(X;=0,X,=1)
0 = 04 - X4=1‘.X1:1,X2=1) 3

P(
P(Xs=1X1=1,X; =0)
06 P(Xs=1X1=0,X,=1)
k P(Xs=1|X, =0,X,=0)
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( 7('000(0) \ ( (]- - 01 - 02 - 63)(1 - 07)
7l'001(9) (1 — 91 et 02 il 03)07
71'010(9) 03(1 —_ 06)
_ 7T011(9) - 6306
T = 71'(9) B 7T100(0) - 02(1 - 05)
T101(6) 6205
71'110(9) 01(1 - 04)
\ 111(6) / 6104 )

Then we obtain

( 610(1 — 610 — 620 — 030) \
620(1 — 610 — 039 — B39)
630(1 — 619 — B9 — B39)
(A'A)™ = diag B10(1 — 640) /610
B50(1 — 650) /620
Be0(1 — b60) /630
Or0(1 — 670)/{1 — 610 — 620 — 630}

3.4.3 Application

In the example below, we will see, by applying the asymptotic results
derived above, how the GS works in comparison with the UGS confined to
basic structure 1.

Example 3.2

Here, the true values of vectors @ and w(0) for basic structure 1 are as
follows:

8y = (10,020, 0s) = (0.900,0.901,0.106)',

(1= 610)(1 — 630) 0.0894

B B (1 — B10)630 _ | 0.0106

mo = ®@)=1 g 1_8g |=| ooso
610620 0.8109

The asymptotic distribution for @ is given by

V(@ — 89) % N[0, (4'4)7),
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where
009 O 0
(AA)=| 0 0.09911 0
0 0 0.94764

From the above asymptotic results, we obtain the probability intervals of
0 at the significance level o = 0.05 and with the sample size n = 100. z,
denotes the upper 100a percentile point.

Table 3.3. MLEs from GS and UGS given the initial point 0§°) =0.1.

RS 0, 05
0.94 0.87 0939 0868 0.101
091 090 0906 0.895 0.099
0.90 093 088 0916 0.087
0.94 088 0936 0871 0.095
GS 095 089 0941 0867 0.084
0.92 094 0891 0913 0.071
0.92 090 0913 0.890 0.094
0.86 0.94 0.859 0939 0101
094 0.89 00932 0.874 0.089
095 093 0923 0884 0.061
0.60 0.80 0.802* 0944 0.322°
0.80 0.58 0.903 0.871  0.356*
0.77 095 0.824* 0.966+ 0.143
0.95 0.80 0.960* 0.849 0.138
0.30 0.80 0.650* 0.976* 0.533"
UGS 050 055 0.753* 0.921 0.518*
090 025 0943 0.832* 0.629*
0.10 0.60 0.335* 0.975* 0.743*
0.70 0.0 0.699* 0.812* 0.822*
0.60 0.15 0.672* 0.844 0.774

NOTE: An asterisk (*) is attached when P is not contained in the corresponding
probability interval at the significance level 0.05.

(1) Probability interval of 8; is 0.8412 < f; < 0.9588,
where |91 — 10| < 22 f10(1-610)

n

(2) Probability interval of 8, is  0.8393 < 6, < 0.9627,
where |92 — By| < zg 820(1—020)

né10

(3) Probability interval of 83 is 0 < f3 < 0.2968,

~ 930!1—930!
where |63 — 63| < z%m' -
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Based on the above probability intervals, we will discuss the efficiency
of the estimates under the GSs and the UGSs with 9§°’ fixed at 0.1. When
P(X, = 1) = 0.8215, the values between 0.8215 and 0.95 look reasonably
good choices for the initial values of 6, under a GS. From the GSA in Figure
3.1, we randomly selected the 10 initial points (9§°’,0§°)), given 0§0):0.1.
Table 3.3 shows that the MLEs with the GS are efficient, while it is not the

case as for the UGS.

Table 3.4. MLEs from the initial values in regions

R; through R4 of Figure 3.3.

Region 9&0) 0;0) 6 0, 05
0.77 095 0.824* 0.966* 0.143
0.80 0.93 0.842 0.949 0.138
R, 0.85 0.83 0.885 0909 0.145
0.90 0.83 0923 0.878 0.144
0.95 0.80 0.960* 0.849 0.138
0.50 0.99 0.747* 0.997* 0.301*
0.55 0.90 0.773* 0972 0.305*
0.60 0.80 0.802* 0.944 0.322*
0.65 0.75 0.827* 0.926 0.319*
R, 0.70 0.70 0.852 0.908 0.322*
0.75 0.60 0.880 0.883 0.364*
0.80 0.58 0903 0.871 0.356*
0.85 0.55 0.927 0.857 0.359*
090 0.50 0952 0.843 0.381*
0.95 0.47 0.960* 0.832* 0.389*
0.25 0.90 0.621* 0.990* 0.545*
0.30 0.80 0.650* 0.976* 0.533*
0.40 0.65 0.702* 0.947 0.523*
0.50 0.55 0.753* 0.921 0.518*
R3 0.60 045 0.800* 0.893 0.534*
0.70 0.35 0.843* 0.867 0.576*
0.80 030 0.892 0.848 0.595*
0.90 0.25 0.943 0.832* 0.629*
0.10 0.60 0.335* 0.975* 0.743*
0.20 0.45 0.456* 0.948* 0.714*
0.30 0.35 0.532* 0.920* 0.708*
Ry 0.40 0.30 0.606* 0.899* 0.701*
0.50 0.20 0.629* 0.866* 0.745*
0.60 0.15 0.672* 0.844* 0.774*
0.70 0.10 0.699* 0.812* 0.822*

NOTE: An asterisk() is attached when P is not contained
in the corresponding probability interval at the significance

level 0.05.
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Figure 3.3. The plot of the four regions Ry, Rz, R3, and Ry.
The solid line is the graph of 6; = 0.7215/6; + 0.1.

Next, we will look at the MLEs for each of the regions in Figure 3.3.
Table 3.4 shows estimates obtained with the initial values lying in regions R;
through R, in Figure 3.3, respectively. The region R, shows that, though the
initial values 0&0) and 0&05 stay in the probability interval 0.05 < |6, — 9§O)| <
0.13 of #; and the probability interval 0.049 < |6, — 0§O)| < 0.101 of 6,
respectively, some of the estimates fall beyond the corresponding probability
intervals.

To sum up, we have seen that the estimates starting from the initial
values which stay away from the actual values fall outside the corresponding
probability intervals. Hence, we may safely say that the selection of the initial
values near the region of the curve (6, = 0.7215/6; 4 0.1) yield good final
estimates, and that the initial values by the GS yield even better estimates.

4. CONCLUDING REMARKS

We explored a methodology for selecting the initial values for the EM
algorithm. It is assumed that the proportions correct of items are available.
The general outline of the methodology follows. First of all, the initial values
for the conditional probabilities, a’s, of the item score variable given latent
variables are determined by using the proportions correct of items and by
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consulting experts or from experience. Secondly, we derive selection rules for
the initial values for probabilities of abilities using those initial values for a’s
and the proportions correct of items. The simulation results strongly indicate
that the GS deserves our attention when we deal with the initial values for
EM. The geometric investigation of GSAs has given us an insight into how
the initial values affect the final estimates. Structures such as basic structure
1 are more sensitive to the initial values than the other basic structures, so
special cares are in need in selecting initial values for such structures.

In a nutshell, we recommend that, when fitting a recursive model with
latent variables, several EM repetitions be tried with different initial values
that are obtained by the GS and that we can then choose the most reasonable-
looking set from the collection of sets of the final estimates. When the model
is relatively small or the structure is relatively simple, a single EM may be
enough; but when the model structure is relatively complex we have to ex-
ercise our discretion in applying the GS to obtain a set of reasonably good
final estimates in as few number of EM trials as possible. The number of EM
trials until success seems to depend mainly upon the model complexity and
the appropriateness of the initial values.

In applying the EM for the recursive models, the experts’ opinions play
important roles, as illustrated in Remarks 3.4 and 3.5, in selecting the initial
values. The guided selection can result in a success only when the data and
the experts’ opinions are fully incorporated in the selection process for the
initial values.

In this paper we have not concerned ourselves about the convergence rate
of EM. The convergence rate seems to be more related to the shape of a given
likelihood function as a multivariate real valued function. The slope of the
graph near a local maximum point to which the EM estimate points approach
determines the convergence rate. Interested readers in this issue are refered
to Van Dyk and Meng (1997) and literature cited therein.

In the research area of educational testing and evaluation, test item de-
velopers are usually requested to give their anticipated proportions of correct
responses to the items they made. Experienced item developers would give
their proportions correct close to the true. And so eliciting their opinions
on the a-values of section 3 is simply a refined version of eliciting for the
proportions correct.

A main idea behind the guided selection is that we try to incorporate
experts’ opinions in the estimation process so that the final estimates are a
balanced reflection of experts’ opinions and data.
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APPENDIX
Theorems 3.3 and 3.4 are proved in this section.
Proof of Theorem 3.3 :

The proof for P(X; = 1) is identical to that of Theorem 3.1. Since the
probability of a correct response to item 2 is

1 1
P(X4 = 1) = Z Z P(Xl = iEl)P(Xg = l‘z)P(X4 = 1lX1 = IL‘],XZ = $2),

£1=0 23=0
P(X, = 1) can be written as

P(X,=1)=A/B, (A1)
where

A = P(Xg=1)—P(X; = 1){P(Xy=1|X; =1,X, =0)
~ P(Xe=1X1=0,X; = 1)} — P(Xy = 1|X; = 0,X; = 0)

and

B = P(Xe=1X=0X;=1)+P(X, = D){P(Xs =1IX1 =1, X2 =1)
C P(Xe=1X1=0,X;=1) - P(Xs = 1|X; =1, X; = 0)
+ P(Xy=1X; = 0,X; = 0)} — P(Xs = 1]X; =0, X; = 0).

Let
(51 = P(X4 = 1|X1 = 1,X2 = 1) - P(X4 = 1|X1 = 0,X2 = 1), (A2)
5= P(Xs=1X1=1,X,=0) - P(X4 = 1|X1 =0,X; = 0). (A3)

Substituting (A.2) and (A.3) into (A.1) and using the 3 equations in (3.11),

we have
P(X4 = 1) — (52P(X1 = 1) — (g0

a921 + (51 - (52)P(X1 = 1) — Qg )

Then we have, if ags — 2021 + age > 0, by inequality (3.12) for P(X; = 1),
P(X4 = 1) — 62’U,1 — Q90
ag + (61 — d2)ur — azo

P(X,=1)=

< P(X;=1) (A.4)

P(X4 = 1) — d2ly — a0
a1 + (6 — dx)ly — ago

, (A.5)
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and if oy — 201 + a9 < 0, then /5 and u; in denominators for (A.4) and
(A.5) are interchanged. From the conditions (3.11), we have our result.

Proof of Theorem 3.4 :

The proof for P(X; = 1) is the same as that of Theorem 3.1. The proba-
bility of a correct response to item 2 is

P(X4 = 1) = Z Z P(X1 = IL'1)P(X2 = IE2|X1 = 1‘1)

z1=023=0

XP(X4 = 1|X1 = $1,X2 = IL‘2). (A6)

Let ey = P(X; = 1|X; = 1) — P(X; = 1). By applying (3.9), (3.10), (3.11)
and (3.12) for P(X; = 1) to equation (A.6), we have

P(X4 = 1) S P(Xg = 1){&21 + Ul(azg - 20421 + azo) - ago}
+ uy (a1 — azg) + azp + e1uz (g2 — Q).
Then we have

P(X4=1) — uj(ag — azg) — ago — e1u{agy — az1)
a1 + uy (0 — 2091 + az) — g

<P(X,=1). (A7)

Let e; = P(X; = 1) — P(X; = 1|X; = 0). Then by applying (3.9), (3.10),
(3.11) and (3.12) for P(X; = 1) to equation (A.6), we have

P(X4 = 1) 2 P(Xz = 1){021 + l1(a22 - 20!21 + (120) - ago}
+ li(az — ag0) + 00 — €2(1 — 1) (@21 — ago).

So the following holds:

P(Xs=1)~li(an — Q) — a0 +€2(1 — L) (21 — 0420)

P(Xo=1)<
(X2 )< ag + li(ag2 — 2091 + ag) — aigg

(A.8)
Now from (A.7) and (A.8) follows that

C<P(X,=1)< D,
where

P(X4=1) — u(021 — o) — a0 — €10 (022 — az1)
agy + ug (o — 2093 + agg) — agg

C =

53
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P(Xy=1) = li(0a1 — a0) — 0rz0 + £2(1 — ly) (g1 — rz0)
agy + L (e — 2001 + 00) — a0

The interval (I2, u2) of (3.13) is contained in the interval (C, D). If &; = 0 and

g, = 0, C equals b and D equals uz, where [ and u, are the values in (3.13).

If P(X, = 1) belongs to the interval (I3, us), then it belongs to the interval
(C, D). Thus the result follows.

D =
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