• Title/Summary/Keyword: Conditional autoregressive model

Search Result 77, Processing Time 0.021 seconds

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

Markov Chain Approach to Forecast in the Binomial Autoregressive Models

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.441-450
    • /
    • 2010
  • In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autoregressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by $Wei{\ss}$(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will discuss how to compute the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$ when T periods are used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$. The methodology is illustrated by applying it to a data set previously analyzed by $Wei{\ss}$(2009).

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model (혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정)

  • Jo, Seongil;Lee, Jaeyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1155-1168
    • /
    • 2016
  • This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

Lunar Effect on Stock Returns and Volatility: An Empirical Study of Islamic Countries

  • MOHAMED YOUSOP, Nur Liyana;WAN ZAKARIA, Wan Mohd Farid;AHMAD, Zuraidah;RAMDHAN, Nur'Asyiqin;MOHD HASAN ABDULLAH, Norhasniza;RUSGIANTO, Sulistya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.533-542
    • /
    • 2021
  • The main objective of this article is to investigate the existence of the lunar effect during the full moon period (FM period) and the new moon period (NM period) on the selected Islamic stock market returns and volatilities. For this purpose, the Ordinary Least Squares model, Autoregressive Conditional Heteroscedasticity model, Generalised Autoregressive Conditional Heteroscedasticity model and Generalised Autoregressive Conditional Heteroscedasticity-in-Mean model are employed using the mean daily returns data between January 2010 and December 2019. Next, the log-likelihood, Akaike Information Criterion and Schwarz Information Criterion value are analyzed to determine the best models for explaining the returns and volatility of returns. The empirical results have deduced that, during the NM period, excluding Malaysia, the total mean daily returns for all of the selected countries have increased mean daily returns in contrast to the mean daily returns during the FM period. The volatility shocks are intense and conditional volatility is persistent in all countries. Subsequently, the volatility behavior tends to have lower volatility during the FM period and NM period in the Islamic stock market, except Malaysia. This article also concluded that the ARCH (1) model is the preferred model for stock returns whereas GARCH-M (1, 1) is preferred for the volatility of returns.

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF