• Title/Summary/Keyword: Conditional Feynman integral

Search Result 24, Processing Time 0.016 seconds

CONDITIONAL INTEGRALS ON ABSTRACT WIENER AND HILBERT SPACES WITH APPLICATION TO FEYNMAN INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja;Lim, Kyung-Pil
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.319-344
    • /
    • 2004
  • In this paper, we define conditional integrals on abstract Wiener and Hilbert spaces and then obtain a formula for evaluating the integrals. We use this formula to establish the existence of conditional Feynman integrals for the classes $A^{q}$(B) and $A^{q}$(H) of functions on abstract Wiener and Hilbert spaces and then specialize this result to provide the fundamental solution to the Schrodinger equation with the forced harmonic oscillator.tor.

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].