• 제목/요약/키워드: Concurrent design

검색결과 380건 처리시간 0.028초

설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 설계지원 (Design Support Based on 3D-CAD System using functional Space Surrounding Design Object)

  • 남윤의;석천청웅
    • 산업경영시스템학회지
    • /
    • 제32권1호
    • /
    • pp.102-110
    • /
    • 2009
  • Concurrent Engineering(CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. This paper proposes a novel concept, Minus Volume (MV), to incorporate various design information relevant to product lift-cycle functions. MV is a functional shape that is extracted from a design object within a bounding box. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of concurrent design and manufacturing.

Concurrent Engineering Based Collaborative Design Under Network Environment

  • Jiang Gongliang;Huang Hong-Zhong;Fan Xianfeng;Miao Qiang;Ling Dan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1534-1540
    • /
    • 2006
  • Concurrent Engineering (CE) is a popular method employed in product development. It treats the whole product design process by the consideration of product quality, cost, rate of progress, and demands of customers. The development of computer and network technologies provides a strong support to the realization of CE in practice. Aiming at the characteristics of CE and network collaborative design, this paper built network collaborative design system frame. Through the analysis of the network collaborative design modes based on CE, this paper provided a novel network collaborative design integration model. This model can integrate the product design information, design process, and knowledge. Intelligent collaboration was considered in the proposed model. The study showed that the proposed model considered main factors such as information, knowledge, and design process in collaborative design. It has potential application in CE fields.

3차원 설계/RP/CAE/3차원 금형설계/제작 정보일원화시스템 개발 (Development of the Integrated Information System for 3D Product Design/RP/CAE/3D Mold Design/Tooling)

  • 윤정호;전형환;안상훈;조명철
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Concurrent Engineering is one of the methods which are used for the rapid product development. One of the important features in Concurrent Egineering is that the development process is to be parallel and the organization should be cross-functional. In order that the process be parallel and that the organization be cross-functional, an integrated information system such as PDM (Product Data Management) is required. Although the integrated data base is constructed, it could be meaningless if the application softwares were not inter-operable. This study shows an example of intergrated information system from three-dimensional product design to mold design and tooling for the development of Deflection Yoke(DY) which is one of the important parts of Cathode Ray Tube(CRT). A three-dimensional product design software, which is based on a commercial code, has been developed by ourselves. Selective Laser Sintering(SLS), which is one of the rapid prototyping techniques, has been used in this study. Mold design has been done by the three-dimensional way. A newly developed method of mold tooling, which is called Quick Die Manufacturing(QDM), has been introduced.

  • PDF

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

동시공학 원리를 적용한 통합 제작공정 설계 (Integrated Manufacturing Process Design by Applying Concurrent Engineering Principle)

  • 이희각;김태정;김충관
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.13-23
    • /
    • 1999
  • This paper deals with manufacturing process design of a simplified gun tube applying CE principle. A concept and characteristics of CE, mathematical model for understanding interaction between design and manufacturing, basic elements and related equations for process planning and cost estimating are introduced. A Knowledge-based Computer-Aided Process Planning System(KCAPPS) is constructed, yielding optimal production cost/time for the shape input and selection of appropriate machines and tools.

  • PDF

자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선 (Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation)

  • 박창규;이종수
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

동시공학의 제 요인들이 제품개발의 효율성에 미치는 영향 (The Effect of Factors in The Concurrent Engineering on the Efficiency of the Product Development Processes)

  • 손달호
    • 한국경영과학회지
    • /
    • 제21권3호
    • /
    • pp.89-108
    • /
    • 1996
  • During the whole product design and development processes, the concurrent engineering relies on strong and permanent interactions between the departmental functions. Concurrent or simultaneous engineering in new product development is a new concept which needs to be redefined. This paper deals with a concurrent engineering model which represents how concurrency, as an organizational process, is related to a interfunctional project team. Four dimensions shaping the sucess of the concurrent engineering are suggested with detailed meausrement instruments. Moreover, an empirical study on the effects of the four dimensions on the efficiency of the product development processes is carried out in the field of electronic industries.

  • PDF

동시공학 환경에서 자원제약이 있는 프로세스 모델의 성능분석에 관한 연구 (A Study on the Performance Analysis of Process Model with Resource Constraints in Concurrent Engineering Environment)

  • 강동진;이상용;유왕진;정용식
    • 산업경영시스템학회지
    • /
    • 제22권51호
    • /
    • pp.231-240
    • /
    • 1999
  • A major concern in Concurrent Engineering is the control and management of workload in a period of process. As a general rule, leveling the peak of workload in certain period is difficult because concurrent processing is comprised of various processes, including overlapping, paralleling looping and so on. Therefore, the workload management with resource constraints is so beneficial that effective methods to analyze design process are momentous. This study presents the Timed Petri Nets approach of precedence logic networks, and provides an alternative for users to analyze constraint processes to resolve conflicts of resources. Another approach to Continuous Time Markov Chain using Stochastic Petri Nets is also proposed. These approaches are expected to facilitate resolving resource constrained scheduling problems more systematically in Concurrent Engineering environment.

  • PDF

동시 고장 시뮬레이터의 메모리효율 및 성능 향상에 대한 연구 (Fast and Memory Efficient Method for Optimal Concurrent Fault Simulator)

  • 김도윤;김규철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.719-722
    • /
    • 1998
  • Fault simulation for large and complex sequential circuits is highly cpu-intensive task in the intergrated circuit design process. In this paper, we propose CM-SIM, a concurrent fault simulator which employs an optimal memory management strategy and simple list operations. CM-SIM removes inefficiencies and uses new dynamic memory management strategies, using contiguous array memory. Consequently, we got improved performance and reduced memory usage in concurrent fault simulation.

  • PDF