• Title/Summary/Keyword: Concrete temperature

Search Result 2,483, Processing Time 0.038 seconds

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.

Hardening properties of MMA Monomer Using EPS in addition of Initiator and Promoter (개시제 및 촉진제의 첨가에 따른 EPS 혼입 MMA 수지의 경화특성)

  • Lee, Jung-Hui;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.929-932
    • /
    • 2008
  • The unsaturated polyester(UP) and epoxy resin have a superior material properties and a chemical resistance using sewerage pipes rehabilitation. However, UP and epoxy have not a low temperatures harding, the requirement $8{\sim}11$ hours long times harding and heating system used by reinforcement liner. This study is to evaluate the effects of low temperature harding properties methyl methacrylate(MMA) monomer using expanded polystyrene(EPS) in addition of initiator and promoters. From the test result, viscosity tends to increase with increasing EPS contents. However, harding time change of the MMA resins which it follows in addition of the initiator and promoter.

  • PDF

Chloride Penetration into Concrete in Tidal Zone by Diffusion-Convection Analysis (확산과 이송을 고려한 콘크리트의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jung, Hyung-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.607-615
    • /
    • 2009
  • Analysis of chloride penetration into concrete is performed considering the repeated wetting and drying conditions of tidal zone, by means of the developed finite element program which enables the diffusion-convection analysis to be conducted. Heat conduction and moisture diffusion are also included in the finite element analysis program in order that their effects to chloride penetration may be considered. For the efficiency of calculation, the analyses of temperature, relative humidity and free chloride concentration are conducted successively in that order, by treating the convection of chloride due to moisture diffusion as an source or sink term. By comparing the analysis result from finite element analysis, where main variable is a wetting and drying period, with the chloride profiles from ACI Life-365 method, it is shown that the Life-365 method gives an accurate result for the submerged zone but does not consider the differences of wetting and drying period. To obtain an accurate chloride profile in the tidal zone, it is confirmed that the diffusion-convection finite element analysis should be applied.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

A Study on the Utilization of Waste Tire/Waste Moter Oil Pyrolytic Residue for Asphalt (폐타이어/폐윤활유 열분해 잔류물의 아스팔트 활용기술)

  • 김상국;손성근;김동찬
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.16-21
    • /
    • 1995
  • When waste t~re/~vastmz otor oil is pyrolyzed. most of them hecome gaseous produds. and thc remaining onc, whascwelght is ahout in% oi the waste Ore, is pyrolyced residue mnstly composcd oi ca~bnn black A rescsrcll was canicrl nut loutilize lhe pyralyred residue of waste tnelwuste lnotol 011 us retnin~cing agent of asphall concrete, bescd on iolelg~r lesearchrepurl. This shows thal the properlies ol asphall concrele ~nclud~cd~ugl ah~l~tyre, sistance to Tear. temperature-v~scusilysusceptil,ilily u e g reatly improved when lhe pellellrcd hrln aI carlmn hlack usmg petroleum o ~als a hinder Iar ihe pellels isused with asphalt. The surface of the pyralyred resirh~ei s covned by ocl film and thla lnakes good comllatibllity with asphallIn order lo ulilk pyrolyzed residue as a reinforcing agenl oi lhe itsphalt concrete, various tests such as Marshnll tcsi, wheeltracking, and revelhng test has been carried out a1 KLER, Ko~ea I-lighway Coo~poration, and TCMO. Tcst lcsults satirry KSslandard, show "npmvements an the dynam~cs tab~l~lzym, d incrcase reslslance to wear at cold telnpelatule Invrsligadon wascarlied oul to sludg the possibility of soil pallul~on when pyrolyzed residue is used as a tzmioicing agenl. E~pcrimentalresulls show the rcsidue contained in thc asphall docs not cause cnv~ranma~lparlo blems.e cnv~ranma~lparlo blems.

  • PDF

An Experimental Study on Thermal Damage and Spalling of Concrete Lining in Tunnel Fire (터널화재시 콘크리트 라이닝의 폭렬 및 화재손상에 관한 실험적 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Cho, Kyung-Suk;Lee, Jae-Sung;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.110-120
    • /
    • 2009
  • In tunnel, though the frequency of fire occurrence is relatively lower than other structures, the characteristics of sealed space tends to cause the temperature to rapidly rise to more than $1000^{\circ}C$ within 5minutes after fire, which might eventually lead to a large fire that usually results in a loss of lives and the damage to the properties, not to mention a huge cost necessary for repair and maintenance after fire. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F 2257-1. Referring to tunnel fire scenarios, it clarified the heat transfer characteristics of concrete PC panel lining depending on fire intensity (ISO, $1^{\circ}C$/SEC, MHC, RWS), and to identify the range of thermal damage, the evaluation was carried out using ITA standard. As a result, 30mm under ISO fire condition, 20mm under $1^{\circ}C$/SEC, 100mm under MHC and 50mm under RWS were measured. And when it comes to spalling, 30mm was measured under RWS and MHC.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Physical Characteristics of Concrete Using High-Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 사용한 콘크리트의 물리적 특성)

  • Lee, Young-Do;Ha, Jung-Soo;Kim, Han-Sic
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The cement industry is considered a major industry for reducing greenhouse gases, increasing the amount of binding materials that can replace cement in concrete is known as the most effective method for reducing carbon dioxide. Therefore, research is being carried out to utilize large quantities of by-products that can be used as alternatives to cement. However, there are problems with reduced strength at early age and retarded setting for major reasons that do not increase the amount of mixture of binders used to replace cement. Thus, in this study, normal cement and high-fineness cement were used and physical properties were reviewed by placing differences in fly ash usage depending on the type of cement. As a result, the characteristics of strength were similar, and the hydration temperature was the same level. Also, the durability test showed that the length change, carbonation resistance were better than those of normal cement. Therefore, it is confirmed that the use of high-fineness cement is effective to reduce the amount of cement used and using more by-products.

Fire Performance of 3D Printing Wall in Simplified Heating Test (간이 내화시험에 의한 3D 프린팅 벽체의 내화 성능에 관한 연구)

  • Kibeom Ju;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.11-17
    • /
    • 2023
  • In recent construction research, the focus has primarily been on developing 3D printers and construction-specific materials. 3D printing technology in construction is growing rapidly due to its potential benefits. However, there's a notable lack of research on the fire performance of 3D Printed Concrete (3DPC) walls. This study addresses this gap by investigating how 3DPC walls respond to controlled heating conditions in a simplified test. The research aims to provide crucial insights into the behavior of 3D-printed mortar composite walls when exposed to fire. The findings have the potential to enhance safety and reliability in 3D printing technology within the construction industry. Furthermore, it could contribute to improving the fire safety standards of architectural structures and expand the use of 3D printing in future construction projects.

Estimation of Setting Time of Super Retarding Mortar Using Settimeter (세티메타를 이용한 초지연 모르타르의 응결시간 추정)

  • Jeong, Yeong-Jin;Hyun, Seung-Yong;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.673-682
    • /
    • 2023
  • This study investigates the delay in setting characteristics of mortar influenced by variations in super retarding agent(SRA) content, curing temperature, and strength levels. Utilizing a settimeter, the research introduces an objective approach to accurately determine the setting time of concrete with SRA under diverse environmental and material mixing conditions at construction sites. The findings indicate that the settimeter, in conjunction with a nonlinear regression model, can effectively estimate the setting time of super retarding mortar. Optimal management of the initial setting is recommended at approximately 45ST and the final setting around 80ST. This methodology enables more effective quality control in the setting times of super retarding concrete.