DOI QR코드

DOI QR Code

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs)

상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가

  • Jang, Seok-Joon (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Byung-Seon (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Sun-Woong (Dept. of Convergence System Engineering, Chungnam National University) ;
  • Park, Wan-Shin (Dept. of Construction Engineering Education, Chungnam National University) ;
  • Yun, Hyun-Do (Dept. of Architectural Engineering, Chungnam National University)
  • 장석준 (충남대학교 건축공학과) ;
  • 김병선 (충남대학교 건축공학과) ;
  • 김선웅 (충남대학교 융복합시스템공학과) ;
  • 박완신 (충남대학교 건설공학교육과) ;
  • 윤현도 (충남대학교 건축공학과)
  • Received : 2016.07.05
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.

본 연구는 상전이물질이 시멘트 모르타르의 수화특성 및 강도특성에 미치는 영향을 평가하기 위하여 실시되었다. 이를 위하여 바륨 및 스트론튬계 상전이물질을 사용하였으며, 상전이물질 혼입률 1~5%에 대한 실험을 수행하였으며, 시멘트 모르타르 작업성 평가, 간이단열온도상승 실험, 압축 및 휨 강도 평가를 실시하였다. 실험결과 상전이물질의 혼입은 시멘트 모르타르의 수화열 감소에 효과적인 것으로 나타났으며, 바륨 기반 PCM을 사용할 경우 흐름성능이 다소 감소하는 것으로 나타났다. 압축 휨 강도의 경우 상전이물질의 혼입률이 증가함에 따라 감소하는 경향을 나타내었으며, PCM을 사용할 경우 혼입률에 따라 압축강도 발현추이의 변화가 발생하였다. 따라서 본 연구에서는 상전이물질이 혼입률에 따른 압축강도 추정식을 제시하였다.

Keywords

References

  1. Ling, T. C., and Poon, C. S., "Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview", Construction and Building Materials, Vol. 46, 2013, pp. 55-62. https://doi.org/10.1016/j.conbuildmat.2013.04.031
  2. Bentz, D. P., and Turpin, R., "Potential Applications of Phase Change Materials in Concrete Technology", Cement and Concrete Composites, Vol. 29, No. 7, 2007, pp. 527-532. https://doi.org/10.1016/j.cemconcomp.2007.04.007
  3. Kim, Y. R., Kim, D. S., Khil, B. S., Kim, O. J., and Lee, D. B., "An Experimental on Properties of Concrete Using Latent Heat Binder", Journal of Korea Concrete Institute, Vol. 20, No. 5, 2008, pp. 661-668. https://doi.org/10.4334/JKCI.2008.20.5.661
  4. Zhang, D., Li, Z., Zhou, J., and Wu, K., "Development of Thermal Energy Storage Concrete", Cement and Concrete Research, Vol. 34, No. 6, 2004, pp. 927-934. https://doi.org/10.1016/j.cemconres.2003.10.022
  5. Sharma, A., Tyagi, V. V., Chen, C. R., and Buddhi, D., "Review on Thermal Energy Storage with Phase Change Materials and Applications", Renewable and Sustainable energy reviews, Vol. 13, No. 2, 2009, pp. 318-345. https://doi.org/10.1016/j.rser.2007.10.005
  6. Kim B. H., and Lee, H. S., "A Study on Thermal Performance of Cement Mortar with PCM", Journal of the Korea Concrete Institute, Vol. 23, No. 4, 2011, pp. 521-528. https://doi.org/10.4334/JKCI.2011.23.4.521
  7. Langan, B. W., Weng, K., and Ward, M. A., "Effect of silica fume and fly ash on heat of hydration of Portland cement", Cement and Concrete Research, Vol. 32, No. 7, 2002, pp. 1045-1051. https://doi.org/10.1016/S0008-8846(02)00742-1
  8. De Schutter, G., "Hydration and Temperature Development of Concrete Made with Blast-Furnace Slag Cement", Cement and Concrete Research, Vol. 29, No. 1, 1999, pp. 143-149. https://doi.org/10.1016/S0008-8846(98)00229-4
  9. Wang, X. Y., and Lee, H. S., "Modeling the Hydration of Concrete Incorporating Fly Ash or Slag" Cement and Concrete Research, Vol. 40, No. 7, 2010, pp. 984-996. https://doi.org/10.1016/j.cemconres.2010.03.001
  10. Baek, D. I., and Kim, M. S., "Appication of Heat Pipe for Hydration Heat Control of Mass Concrete", Journal of the Korea Concrete Institute, Vol. 20, No. 2, 2008 pp. 157-164. https://doi.org/10.4334/JKCI.2008.20.2.157
  11. Gajda, J., and Vangeem, M. "Controlling Temperatures in Mass Concrete", Concrete international, Vol. 24, No. 1, pp. 58-62.
  12. Kim, J. K., Kim, K. H., and Yang, J. K., "Thermal Analysis of Hydration Heat in Concrete Structures with Pipe-Cooling System" Computers and Structures, Vol. 79, No. 2, 2001, pp. 163-171. https://doi.org/10.1016/S0045-7949(00)00128-0
  13. Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., and Founti, M., "The Behavior of Self-Compacting Concrete Containing Micro-Encapsulated Phase Change Materials", Cement and Concrete Composites, Vol. 31, No. 10, 2009, pp. 731-743. https://doi.org/10.1016/j.cemconcomp.2009.08.002
  14. Choi, W. C., Khil, B. S., Chae, Y. S., Liang, Q. B., and Yun, H. D., "Feasibility of using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures", The Scientific World Journal 2014, 2014, pp. 1-6.
  15. KS L ISO 679, "Methods of Testing Cements-Determination of Strength", Korean Standards Association, 2011, pp. 9-11.
  16. Korea Concrete Institute, Concrete Structural Design Code, 2012.