• Title/Summary/Keyword: Concrete mix design

Search Result 473, Processing Time 0.021 seconds

A Study on Optimal Mix Design of Cold-Weather Concrete (한중콘크리트의 최적배합에 관한 연구)

  • 소현창;정병욱;정경화;문성규;손석제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.313-318
    • /
    • 1998
  • Generally, the concrete constructed during cold weather has the frozen damage which cause the fatal damage so that heat curing and sheet curing was performed to prevent the early freezing of concrete. However, partial refrigeration caused by thermal gradient has many troubles so that the construction hasn`t been done as possible. This paper presents the development of strenth properties and optimal mix design against frozen damage under the cold weather, 1$0^{\circ}C$ below the zero.

  • PDF

Preliminary Study for Optimum Mix Design of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 최적배합설계를 위한 기초적 연구)

  • Park, Je-Seon;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.25-30
    • /
    • 1996
  • The waste foundry sand might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Experiments were performed with the variables of W/C ratio, S/A, Sand/Waste foundry sand ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that then W/C ratio is the most important factor to the concrete strength. The substitute of waste foundry sand up to 30% has little influence, saying that it can substitute the fine aggregate without damaging the concrete properties.

  • PDF

Preliminary Study for Optimum Mix Design of Concrete Incorporating Waste Basalt (현무암을 혼입한 콘크리트의 최적배합설계를 위한 기초적 연구)

  • Jung, Young-Hwa;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.39-44
    • /
    • 1996
  • The waste basalt might be recycled in concrete, resulting in energy saving and environmental protection. An half Factorial Experiments were performed with the variables of W/C ratio, S/A, Crushed stone/Basalt ratio and Slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio is the most important factor to the concrete strength. The substitute of waste basalt up to 100% has little influence, saying that it can substitute the coarse aggregate without damaging the concrete properties.

  • PDF

Building mix design and quality control measures to reduce the combined deterioration of plain concrete in harsh environments (혹독한 환경에서의 무근콘크리트 복합열화 저감을 위한 배합설계 및 품질관리 방안 구축)

  • Kim, Dae-Geon;Park, Chan-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.85-86
    • /
    • 2016
  • Recently damages caused by the additional costs and degradation in durability combined deterioration due to plain concrete deterioration has occurred. In particular, in the case of the finish that is not exposed to the outside air in the concrete to respond to the harsh environment (freeze-thawing, calcium laying, etc.), to establish a quality control way for the process and the concrete mix design for it.

  • PDF

Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio (골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합)

  • 최연왕;정문영;정지승;문대중;안성일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF

A Study On the Mix Design and Quality Control System of High Strength Concrete for the Construct ion of High Rise Complex Structure (초고층 주상복합구조물에 적용한 고강도 콘크리트의 배합설계 및 품질관리 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.40-45
    • /
    • 2001
  • The purposes of this study were mix design and quality control of high strength concrete for the construction of high rise complex structure. Desired performances of this high strength concrete were slump flow 50$\pm$10cm, air content 4.5$\pm$1.5% and design strength 400kgf/$cm^2$. Experimental flow was that optimal mix design was selected in the indoor experiment and after that, producing test was done in the batcher plant. Excel lent results of experiment was obtained from binder content 475kg/$m^2$ with replacement ratio 10% of fly ash. The results of field application of high strength concrete was sufficiently satisfied both flowability and compressive strength.

  • PDF

Development of a Technical Consulting System for Concrete Mix Design (콘크리트의 배합설계 기술자문시스템 개발)

  • 김병권;허택녕;어석홍;이석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.874-879
    • /
    • 2000
  • A prototype expert system for normal concrete mix design was developed using an technical consulting system development tool, EXSYS Professional. The knowledge contained in the system was obtained from the standard specifications of Korea Concrete Institute, American Concrete Institute and from the related British Standards. The knowledge base and user interface will be expanded to cover wider scopes of the problems. If the system is successfully developed as an operational system, it will produce a great deal of economic benefits by reducing the time and money needed to obtain an expert's judgement and experience in decision making for repetitive tasks related to concrete mix proportions.

  • PDF

Strength and Durability Properties by Concrete Type (콘크리트 종류에 따른 강도 및 내구성 특성)

  • 이병덕;심대원;양우석;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • The optimum mix proportioning of concrete is to produce a concrete which satisfies the strength, workability and durability required with minimum component of materials. However in practice the cement content of mix proportioning in construction field is normally higher then required. In this study, the existing mix proportioning of concrete currently used in Korea Highway Corporation has been reviewed by reducing 10kg of cement content by 3~5 strength in strength and workability during the first year of this project. The optimum mix design is established based on the results of the above review and durability were examined during the second year. The experimental results though 2 year show that 103~0% of the reduction of cement content still satisfies the specified strength of concrete and produces higher durability concrete.

  • PDF

Mix design and Performance Rvaluation of Ultra-high Performance Concrete based on Packing Model (패킹모델 이용한 초고성능 콘크리트 배합설계 및 성능 평가)

  • Yan, Si-Rui;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.94-95
    • /
    • 2020
  • This paper introduces the mix design and performance evaluation of Ultra-High Performance Concrete (UHPC). The concrete mixture is designed to achieve a densely compacted cementitious matrix via the modified Andreasen & Andersen particle packing model. The compressive strengths of UHPC designed by this method reached 154MPa. The relationship between packing theory and compressive strength of UHPC is discussed in this paper.

  • PDF

An Experimental Study on the Properties of Early-Strength for high performance Concrete according to Mix Design (배합설계 조건에 따른 고성능 콘크리트의 조기강도 발현특성에 관한 연구)

  • Choi, Sumg-Woo;Yoo, Jong-Su;Beak, Chul-Woo;Kim, Jeong-Sik;Ryu, Deung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.231-232
    • /
    • 2009
  • In this study, the properties of early strength development for high performance concrete according to mix design were examined In particulara, we examined the mineral addmixture influence for mix design.

  • PDF