• Title/Summary/Keyword: Concrete floor

Search Result 581, Processing Time 0.023 seconds

Study on Structural Behavior of Multi-layered Concrete Floor Structure (콘크리트 다층바닥판 구조의 구조거동에 관한 해석적 연구)

  • 유영준;송하원;변근주;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, the structural behavior of R.C. multi-layered floor structure including foam concrete layer is numerically analyzed. For the analysis, 3D interface element has been implemented to finite element analysis program to consider the interfacial behavior of multi-layered floor structure which consists of rubber layer, foam concrete layer and mortar layer on RC slab. Based on analysis results on multi-layered structure, its structural behavior is analyzed according to geometrical and material properties of foam concrete. Optimum material property of each layer of the floor structure is proposed to get optimum multi-layered concrete structure.

  • PDF

Evaluation of Cracking Strength of Floating Floor System (뜬바닥구조의 균열강도 평가)

  • Lee, Jung-Yoon;Lee, Bum-Sik;Jun, Myoung-Hoon;Kim, Jong-Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper reports the test results of the floating floor system used to reduce the floor noise of apartment buildings. Recently, many soft resilient materials placing between the reinforced concrete slab and finishing mortar are used. The resilient material should not only reduce the floor impact sound vibration from the floor but also support the load on the floor. Thus, even if soft resilient materials satisfy the maximum limitation of light-weight impact sound and heavy-weight impact sound, these materials may not support the load on the floor. The experimental program involved conducting sixteen sound insulation floating floor specimens. Three main parameters were considered in the experimental investigation: resilient materials, loading location, and layers of floor. Experimental results indicated that the stiffness of resilient material significantly influenced on the structural behavior of floating floor system. In addition, the deflection of the floating concrete floor loaded at the side or coner of the specimen was greater than that of the floor loaded at the center of the specimen. However, the aerated concrete did not effect on the cracking strength of floating floor system.

Development and Performance Evaluation of Floor Level Joint System (다목적 바닥 레벨조인트 공법의 개발 및 성능평가에 관한 연구)

  • 최윤철;서수연;지남용;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.953-958
    • /
    • 2002
  • The finishing method of concrete floor using automatic surface finisher is one of new technologies in concrete floor construction. The development of high technologies in construction will increase in order to satisfy the demand to construct high quality building. Using this method, it is possible to increase the quality of building as well as to reduce the labor work in site. In this paper, a system which can be used to finish the concrete floor using automatic surface finisher, is presented and its structural capacities are evaluated. The system is composed of rail which guides the surface vibrator and absorbs the volume change of concrete, and a device supporting the rail. From the experimental work for these devices, it was shown that the support and rail had suitable strength to resist the automatic surface finisher. For design purpose, also, effective span of supports was tabulated.

  • PDF

A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가)

  • Roh, Young-Sook;Yoon, Seong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

INFLUENCE OF ROLLING LOADS BY CASTERS ON SEPARATION RESISTANCE OF SUBSTRATE CONCRETE AND SYNTHETIC RESIN FLOOR COATINGS (下地コンクリ-トと合成樹脂塗り床材の耐剝離性に及ぼす キャスタ一の走行荷重の影響)

  • Takamasa, Mikami;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.73-78
    • /
    • 2003
  • In this Study, we examined the influence of characteristics of rolling loads by casters on separation resistance of substrate concrete and synthetic resin floor coating. In the experiment, we first prepared floor samples having substrate concrete of various compressive strength, surface hardness and surface configurations, then put the coated samples to the test of separation resistance with Rolling Caster Loading Machine. Three loading conditions consisted of different kinds of casters, rolling conditions, and coating materials. Consequently, we clarified that the grade of separation resistance varied widely according to the characteristics of substrate concrete and rolling loads.

Vibration Characteristics of Low-Vibration RC Floor Structures (저진동 RC 플로어 구조의 진동특성에 관한 연구)

  • Kim, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.510-513
    • /
    • 2006
  • Due to the location of vibration sensitive equipment on the floor, it is necessary for its vibration performance to be maintained within stringent limits, resulting in a design of higher mass and stiffness than would be usual for a floor of this type. Modal testing is conducted on the floor to obtain their dynamic characteristics. A considerable level of vibration transmission is observed by comparing the ratio of simulated transfer and point mobility FRFs of the floor.

  • PDF

A Study on the Development of Rolled Dry Floor Heating System for Improving Workability (현장 시공성 개선을 위한 롤타입 건식바닥난방시스템 개발)

  • Lee, Gyu-Dong;Kim, Jun-Ho;Jeong, Chang-Ho;Kim, Dong-Woo;Ogawa, Keiichiro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.177-180
    • /
    • 2012
  • Korea residential housing generally use wet floor heating system 'Ondol' which consist of insulation cushioning, lightweight foamed concrete, hot water pipe and mortar on top of reinforced concrete slab. Wet floor heating system's installation process is too complicate and difficult to supervise field for continuing assurance quality. Also, this method has a huge impact on the progress of construction because it take a long time to cure finishing mortar and lightweight foamed concrete. Therefore, it is considered a disturbance factor of reduction of construction duration for enhancing competitiveness. In this study, we conducted an experiment about the radiant heat performance and temperature difference on upper panel of rolled dry floor heating systems which is jointly developed by Kolon global and Sumisho Metalex for remodeling housing, studio apartment and the urban-life housing.

  • PDF

Visual Preference of the Methods for River Embankment - The Case of Dongchon in Gwangyang - (하천호안공법의 시각적 선호도 - 광양시 동천을 사례로 -)

  • Lee Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.12-22
    • /
    • 2006
  • The purpose of this study is to evaluate visual preferences of the methods for river embankment based on seasonal changes and to reveal the relationship between visual preference and effective factors, which are the physical and esthetic elements inside the river. For this research seven river embankment methods including concrete block, concrete wall, gabion, and vegetated concrete block were selected in Dongchon of Gwangyang. Twenty-eight pictures by the four pictures of each embankment method based on seasonal changes, the winter and summer of the first and second years after construction were used for a photo-questionnaire by 49 participants. In the analysis of the relationship between visual preference and effective factors, the independent variables included eight factors: form of the material, harmony with the surroundings, the cleanness of river floor, the green area of embankment methods, the water area in river floor, the stone and sand area in river floor, the planting area in river floor, and the area of embankment itself. The result of this study are as follows. First, visual preference in summer was higher than in winter, and the summer landscape of the second you scored the highest value for visual preference. Second, similarly to the way the vegetated concrete block produced a green effect, cobblestone and gabion embankments made of natural materials scored higher than others, whereas the concrete retaining wall scored the lowest of all methods because of it's artificiality. Third, the seven independent variables, except form of the material, are proved statistically significant at the 5% level. The water area in river floor, harmony with the surroundings, the planting area in river floor, and the cleanness of the river floor were revealed as more effective factors influencing visual preference. The research results suggest that the riverscape has to be controlled in terms of seasonal change and embankment methods. Natural materials and green effects in embankment methods are more important for increasing landscape preference, and the landscape factors inside a river should also be considered important variables. It is recommended that advanced study on other factors affecting visual preference of the riverscape be carried out to support this research.

Reduction of Floor Impact Noise and Impact Force for PVC Floor Covering and Floor Mat (PVC 바닥 마감재와 바닥 매트의 바닥충격음 및 충격력 저감)

  • Mun, Dae-Ho;Song, Guk-Gon;Lee, Cheol-Seung;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.501-508
    • /
    • 2014
  • Floor finishing materials such as floor coverings and floor mats can reduce floor impact noise easily. When an impact was applied to the floor, its finishing material is deformed and the impact force that was applied to the concrete slab is changed. The softer finishing materials were, the more impact force decreased. An experimental study was performed using 14 PVC floor coverings and 16 floor mats to capture the characteristics of impact force and impact noise in the residential buildings. The test results show that the impact force spectrum and the floor impact noise spectrum have a linear relationship in the case of a bare concrete slab, and the characteristics of impact force reduction are the same as those of floor impact noise reduction.

Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels (회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF