• 제목/요약/키워드: Concrete face rockfill dam

검색결과 42건 처리시간 0.028초

차수벽에 균열이 발생한 표면차수벽형사력댐의 침투거동 연구 (Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam with Cracked Face Slab)

  • 조성은;박한규;임은상;김기영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.866-873
    • /
    • 2009
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

CFRD의 최근 설계ㆍ시공기술 동향 (Recent Techniques for Design and Construction of CFRD)

  • 박동순;김형수;임정열
    • 지질공학
    • /
    • 제15권1호
    • /
    • pp.77-86
    • /
    • 2005
  • CFRD(Concrete fared Rockfill Dam)는 기존의 중심코어형 락필댐과 대별되는 우수한 구조적, 재료적 특성으로 현재 가장 널리 활용되는 댐 형식이다. 본 고에서는 그동안 이루어져온 기술의 축적을 바탕으로 CFRD의 설계와 시공에 있어 최근에 부각된 최신 기술들을 정리하여 향후 활용에 도움을 줄 수 있도록 하였다. 특별히 본 고에서는 최근 경험을 바탕으로 실무에서 적용되고 있는 연약한 암을 이용한 댐체 축조 사례, 대단히 큰 입경의 락필 재 대신 도입된 sand-gravel fill 댐에 대한 경험, plinth와face slab를 연결하기 위해 새롭게 채택된 연결 슬래브공법, 기존 댐의 증고사례, 역침투 현상, 댐 하류의 환경친화죤, 차수벽 슬래브의 두께와 철근비의 변화 추이, 충적층 기초의 처리, 최근 적용되기 시작한 curb element 공법등에 대한 간략한 기술적 동향을 고찰하여 관련 기술자들의 이해를 돕고자 하였다.

Deformation analysis of high CFRD considering the scaling effects

  • Sukkarak, Raksiri;Pramthawee, Pornthap;Jongpradist, Pornkasem;Kongkitkul, Warat;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.211-224
    • /
    • 2018
  • In this paper, a predictive method accounting for the scaling effects of rockfill materials in the numerical deformation analysis of rockfill dams is developed. It aims to take into consideration the differences of engineering properties of rockfill materials between in situ and laboratory conditions in the deformation analysis. The developed method is based on the modification of model parameters used in the chosen material model, which is, in this study, an elasto-plastic model with double yield surfaces, i.e., the modified Hardening Soil model. Datasets of experimental tests are collected from previous studies, and a new dataset of the Nam Ngum 2 dam project for investigating the scaling effects of rockfill materials, including particle size, particle gradation and density, is obtained. To quantitatively consider the influence of particle gradation, the coarse-to-fine content (C/F) concept is proposed in this study. The simple relations between the model parameters and particle size, C/F and density are formulated, which enable us to predict the mechanical properties of prototype materials from laboratory tests. Subsequently, a 3D finite element analysis of the Nam Ngum 2 concrete face slab rockfill dam at the end of the construction stage is carried out using two sets of model parameters (1) based on the laboratory tests and (2) in accordance with the proposed method. Comparisons of the computed results with dam monitoring data indicate that the proposed method can provide a simple but effective framework to take account of the scaling effect in dam deformation analysis.

Blended 섬유를 사용한 CFRD 표면 차수벽 콘크리트의 균열발생 가능성 분석 (Crack Analysis of CFRD Face Slab Concrete Using Blended Fiber)

  • 우상균;송영철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.653-656
    • /
    • 2008
  • 본 연구의 목적은 댐의 설계 및 건설에 있어 댐 콘크리트의 내구성을 향상시키기 위한 것이다. 특히, 콘크리트 표면 차수벽형 석괴댐(Concrete Faced Rockfill Dam)의 경우 표면 차수벽 콘크리트의 내구성은 시멘트의 일부를 플라이애쉬로 치환하고 blended 섬유(고인성 섬유 + 일반 섬유)를 사용함으로써 향상될 수 있다. 따라서 본 연구에서는 플라이애쉬의 치환율 및 blended 섬유의 혼입율에 따른 표면 차수벽 콘크리트의 내구성과 열특성 실험을 수행하고 그 효과를 분석하였다. 실험결과 플라이애쉬 치환율은 15%, blended 섬유의 혼입율은 0.1%(고인성 섬유 $0.09kg/m^3$ + 일반 섬유 $0.81kg/m^3$)인 경우 내구성 측면에서 가장 우수한 결과를 보여 주었으며, 특히 다른 배합에 비하여 균열발생 가능성이 상대적으로 낮은 것으로 나타났다.

  • PDF

차수벽 콘크리트의 섬유보강 및 팽창제 혼입에 따른 소성수축균열 제어특성에 관한 실험적 연구 (An Experimental Study on Plastic Shrinkage of fiber and Expansive Additive for Face Slab Concrete)

  • 김완영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.679-682
    • /
    • 2005
  • The effects of substituting cement with fiber addition(poly vinyl alcohol), fly ash and Expansive Additive on the control of microcrack and enhanced durability performance of face slab concrete in concrete-faced rockfill dam was studied experimentally The laboratory test results shown that the mixture of fiber containing concrete and of fly ash replacement of concrete to be more effective than expansive additive concrete in the crack control and mechanical performance.

  • PDF

표면차수벽 석괴댐의 물리탐사 경향 분석 (Aanalysis of Geophysical exploration tendency of C.F.R.D)

  • 김재홍;신동훈;임은상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.871-876
    • /
    • 2010
  • When surface Concrete Face Rock fill Dam constructs than existent center core type rock fill dam, it is much prevalent form in domestic these day by quality control of that is profitable and weather condition etc. of coreZone. C.F.R.D is less research about seismic survey(Refractional Seismic Prospectin, Resistivity Prospecting) of levee body than fill dam. Thus as C.F.R.D seismic survey is less, safety of that consist is short most development flue is high reason. That is not checking target of minuteness safety diagnosis and so on by short operation period. Wish to analyze inquiry incidental and difference with center core type dam and acquire C.F.R.D preservation administration upper necessary inquiry condition forward hereafter.

  • PDF

CFRD 표면 차수벽 콘크리트의 내구성 향상에 관한 실험 연구 (An Experimental Study on the Improvement of Durability for Face Slab Concrete in CFRD)

  • 우상균;송영철;원종필;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1017-1022
    • /
    • 2001
  • Dam concrete for pumped storage power plants should have sufficient durability in repetitive wet and dry conditions and abrasion due to water level fluctuation and also in freezing and thawing resistance as well as permeability capacity. This study presents various experimental results to enhance the durability of face slab concrete in CFRD(concrete faced rockfill dam) by varying the fly ash substitution such as 0%, 15%, 20% and 25% and polypropylene such as 0%, 0.1%. The effect on durability of concrete corresponding to the increasing amount of fly ash and polypropylene was evaluated and the optimum quantity of fly ash and polypropylene substitution was recommended. The results show that 20% of fly ash substitution and 0% of polypropylene were found out to be an optimum quantity to achieve excellent performances in durability for face slab concrete in CFRD.

  • PDF

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

댐콘크리트의 내구성 향상에 관한 실험적 연구 (An Experimental Study on the Improvement of Durability of Dam Concrete)

  • 윤영수;원종필;송영철;우상균;송유신
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.415-420
    • /
    • 1999
  • Dam concrete should have sufficient durability in wet and dry repetition and abrasion due to water lever variance and also in freezing and thawing resistance as well as water penetration capacity. This study presents various experimental performance to enhance the durability of face slab concrete in concrete face rockfill dam by varying the fly ash substitution of 0%, 10%, 15% and 20% in cement quantity. The effect on durability corresponding to the increasing amount of fly-ash was evaluated and the optimum quantity of fly-ash subtitution was finally recommended. The results show that 15% fly-ash substituion was found out to be an optimum quantity and demonstrated an excellent performances in durability.

  • PDF

콘크리트 표면차수벽형 석괴댐 지지층의 토질특성 (Soil Properties of Bedding Bone for Concrete Faced Rockfill Dam)

  • 배종순;성영두
    • 한국지반공학회지:지반
    • /
    • 제12권1호
    • /
    • pp.47-62
    • /
    • 1996
  • The bedding zone which influence directly to the safety of dam is supporting the face slab under hydraulic load in concrete faced rockfill dam. In case that leakage is developed due to various ruptured joint or cracks of face slab and etc., the bedding zone should limit the leakage by low permeability and keep the internal stability. In this study for the proper coefficient of permeability various properties, such as gradation, dry density, performance of embankment work and etc. were analysed. The results from the large scale test of permeability and density are summerized as follows : 1. Coefficient of permeability is decreased clearly by increase of dry density. 2. The particles smaller than the No.4 strive( p,) greatly influences the permeability under dry density of 2.24t 1 m3. 3. In case of C.40 and p,40%, even if dry density decreased to 2.0t/m3, the permeability coefficient is assumed to u x1-scm/s and internal stability is abtained. 4. Generally in dam construction since dry density and uniformity coefficient of bedding zone were higher than 2.2t/m3 and 50 respectively p, of 30~40% is assumed to be suitable and permeability coefficient of below 1$\times$10-3cm l s is expectable.

  • PDF