• 제목/요약/키워드: Concrete corrosion

검색결과 1,235건 처리시간 0.027초

콘크리트 중의 철근방식을 위한 방청제의 적용 (Application of Corrosion Inhibitors to Protect the Corrosion of Reinforcement in Concrete)

  • 문한영;김성수;김홍삼;안기용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.751-754
    • /
    • 1999
  • Corrosion inhibitors are widely used to protect chloride-induced corrosion of reinforcement in concrete. However, the number of researches on the corrosion of reinforcement, when corrosion inhibitor is used, is not enough for actual application in the field. In addition, on corrosion of reinforcement a quantitative standard about corrosion inhibitor does not exist and the data about its influencing concrete are relatively rare. In this study, the effectiveness of rebar corrosion protection, setting time, compressive strength, chloride ion's penetration, and diffusion test were performed using with three different kinds of corrosion inhibitors.

  • PDF

철근부식에 의한 콘크리트의 균열발생에 관한 연구 (Effect of Rebar Corrosion on the Onset of Cracks in Cover Concrete)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.771-774
    • /
    • 1999
  • This study was carried out to quantitatively investigate the amount of corrosion at the time of onset of cracks in cover concrete due to rebar corrosion. In this experiments, the accelerated galvanostatic corrosion method was carried out. FEM analyses were also conducted to investigate the expansive behaviors due to rebar corrosion and the mechanical properties of corrosion products. As a result, it was concluded that the corrosion ratio at the time of onset of cracks in cover concrete was 3% by weight. The onset of cracks in cover concrete due to rebar corrosion could be analyzed by the finite element method.

  • PDF

부식 모니터링을 위한 Ladder system에 관한 연구 (The Research on the Ladder System for Corrosion Monitoring)

  • 송호진;문홍식;이상국;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.671-676
    • /
    • 2001
  • Reinforcement corrosion is major problem for those who own and maintain reinforced concrete structures exposed to chlorides. It is well understood that the form of corrosion is more problematic than corrosion found elsewhere, Because concrete has no apparent signs that there is anything amiss until the process of deterioration is relatively far advanced. The objective of this research is to develop the ladder system which monitors the corrosion of reinforcing steels in concrete. This system can be used to assess the corrosion condition and corrosion rate of steel in concrete, which can give timely repair and strengthening of steel in concrete structure.

  • PDF

방식재료가 콘크리트의 투수성에 미치는 영향에 관한 연구 (A Study on the Effect of Corrosion Inhibitors for Concrete Permeability)

  • 이상엽;한만엽;이차돈;엄주용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.241-247
    • /
    • 1997
  • Reinforced concrete is in general known as high durability construction material under normal enviroments due to strong alkalinity of cement. Marine and harbour concrete as well as concrete mixed with seasand for fine aggregate are exposed to detrimental saltwater wich cause to accel-eate corrosion of reinforcing steel in concrete. If corrosion resistance of concrete gets to weaken due to carbonation and crack in cover concrete, concrete durability rapidly decrease by corrosion of reinforcement steel embedded in concrete. This research is to investigate basic physical properties of various corrosion inhibitors and to evaluate their corrosion resistance in concrete mixed with seasand. The object of this study is develop appropriate corrosion protection systems so as to enhance the durability of concrete.

  • PDF

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Performance indicator of the atmospheric corrosion monitor and concrete corrosion sensors in Kuwait field research station

  • Husain, A.;Al-Bahar, Suad Kh.;Salam, Safaa A. Abdul
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.981-994
    • /
    • 2016
  • Two field research stations based upon atmospheric corrosivity monitoring combined with reinforced concrete corrosion rate sensors have been established in Kuwait. This was established for the purpose of remote monitoring of building materials performance for concrete under Kuwait atmospheric environment. The two field research sites for concrete have been based upon an outcome from a research investigation intended for monitoring the atmospheric corrosivity from weathering station distributed in eight areas, and in different regions in Kuwait. Data on corrosivity measurements are essential for the development of specification of an optimized corrosion resistance system for reinforced concrete manufactured products. This study aims to optimize, characterize, and utilize long-term concrete structural health monitoring through on line corrosion measurement and to determine the feasibility and viability of the integrated anode ladder corrosion sensors embedded in concrete. The atmospheric corrosivity categories supported with GSM remote data acquisition system from eight corrosion monitoring stations at different regions in Kuwait are being classified according to standard ISO 9223. The two nominated field sites where based upon time of wetness and bimetallic corrosion rate from atmospheric data where metals and rebar's concrete are likely to be used. Eight concrete blocks with embeddable anodic ladder corrosion sensors were placed in the atmospheric zone adjacent to the sea shore at KISR site. The anodic ladder corrosion rate sensors for concrete were installed to provide an early warning system on prediction of the corrosion propagation and on developing new insights on the long-term durability performance and repair of concrete structures to lower labor cost. The results show the atmospheric corrosivity data of the environment and the feasibility of data retrieval of the corrosion potential of concrete from the embeddable sets of anodic ladder corrosion sensors.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

전기화학적 부식촉진 기법을 이용한 철근 콘크리트 부식의 영향평가 (Application of Electrochemical Accelerated Corrosion Technique to Detection of Reinforcing Corrosion in Concrete)

  • 이수열;이재봉;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.675-678
    • /
    • 1999
  • Rebar corrosion in concrete containing both chloride ions and calcium nitrite inhibitors were investigated by the various electrochemical methods. Rebar corrosion was accelerated by applying the impressed current to the rebar in concrete. Effect of chloride content and inhibitors on rebar corrosion were evaluated. Accelerated corrosion technique is the method to measure the time to the initiation of cracks of reinforced concretes, by applying constant voltage between rebar and the stainless steel cathedes. The increase of concentration of chloride ions in concrete result in the increase in anodic currents and the reduction of time to crack. However addition of inhibitors did not improve corrosion resistance of rebar in concrete. Rebar corrosion in concrete with chloride ions and inhibitors was also analyzed by the immersed tests though the mesurement of corrosion potentials.

  • PDF

철근의 강종 및 직경 변화에 따른 부식특성에 관한 연구 (A Study on the Characteristics of Reinforcing Steel according to Specification and Diameter)

  • 임재원;지남용;윤상천;최진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.53-58
    • /
    • 2003
  • Concrete structures move wholly with concrete and rebar, so they endure external force, but recently the embedded rebar in concrete has been corroded by environmental, physical and chemical factors, the embedded rebar corrosion influences concrete structure to deteriorate structure capacity. To revaluate effect to deterioration of concrete structure according to corrosion of rebar, the researcher mostly examined into corrosion rebar and complex relation of concrete. In that there are flexural strength deterioration of corrosion concrete structure and the bond strength of concrete. But It has not sufficiently studied about physical characteristic of corrosion rebar itself. In this study I will compare specification of rebar through corrosion experiment with corrosion ratio of rebar according to diameter and revaluate. And will investigate the effect to strength characteristic of rebar according to corrosion ratio.

  • PDF

철근의 강종 및 직경 변화에 따른 부식특성에 관한 연구 (A Study on the Characteristics of Reinforcing Steel according to Specification and Diameter)

  • 임재원;지남용;윤상천;최진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.53-58
    • /
    • 2003
  • Concrete structures move wholly with concrete and rebar, so they endure external force, but recently the embedded rebar in concrete has been corroded by environmental, physical and chemical factors. the embedded rebar corrosion influences concrete structure to deteriorate structure capacity. To revaluate effect to deterioration of concrete structure according to corrosion of rebar, the researcher mostly examined into corrosion rebar and complex relation of concrete. In that there are flexural strength deterioration of corrosion concrete structure and the bond strength of concrete. But It has not sufficiently studied about physical characteristic of corrosion rebar itself. In this study I will compare specification of rebar through corrosion experiment with corrosion ratio of rebar according to diameter and revaluate. And I will investigate the effect to strength characteristic of rebar according to corrosion ratio.

  • PDF