• 제목/요약/키워드: Concrete aggregate

검색결과 2,316건 처리시간 0.038초

재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(II)-제 1보 : 역학적 성질 및 강도 조기추정 (A Study on the Application of Early Estimation Method and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(II))

  • 최청각;윤기원;한천구;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.57-60
    • /
    • 1993
  • To analyze the using of recycled aggregate on concrete as the substitude aggregate is important problem for the reuse of waste matter and prevention of environmental pollution. Therefore, this study is designed for investigation and analyzing the mechanical properties and early estimational factors of strength on concrete sing aggregate of the waste concrete. And is aimed to provide the fundamental data for recycled aggregate.

  • PDF

증기양생한 플라이애쉬 혼입 재생골재 콘크리트의 강도특성에 관한 실험적 연구 (An Experimental Study on The Strength Property of the Concrete Using Recycled Aggregate Mixed Fly Ash in Steam Curing)

  • 심종성;박성재;이희철;김동희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.326-329
    • /
    • 2003
  • In practice, recycled aggregate is not used for a structural member due to its high absorbability and abrasion. It is, however, highly expected that the usage of recycled aggregate increases as the processing technique of the recycled aggregate progresses. In this study herein, the compressive strength of the recycled aggregate concrete was investigated. Coarse aggregate was replaced with 100% of the recycled aggregate, and cement and fine aggregate was replaced with various amount. The specimen was steam-cured at $80^{\circ}C$. It was shown that the concrete can obtain desirable strength when fine aggregate was replaced with up to 60% of recycled fine aggregate, and when cement was replaced with up to 15% of fly ash.

  • PDF

석탄회 인공경량골재를 사용한 고강도 콘크리트의 역학적 특성 (Mechanical Properties of Reinforced High-Strength Concrete Using Fly-ash Artificial lightweight Aggregate)

  • 박완신;한병찬;성수용;윤현도;정수용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.151-156
    • /
    • 2001
  • Concrete has excellent characteristics as building material and functions relatively well; but it has many problems concerning too heavy weight of the structures. Accordingly, it is the assignment for study in the part of building materials to lighten and high strengthen the weight of concrete structures in order to improve those weak Points; and it seems one of the representative solutions to develop the high strength lightweight aggregate concrete. Based on the experimental results presented, the following conclusions are drawn. The concrete with unit weight of 1.96~2.03t/$m^{2}$, compressive strength of 322~431kgf/$cm^{2}$ was gained. So, it appears that the lightweight aggregate concrete will be useful for low unit weight and high strength lightweight aggregate concrete. In the end, to manufacture artificial lightweight aggregate concrete for construction work is necessary to develope artificial aggregate which has improved performances physically.

  • PDF

포졸란 재료를 사용한 재생골재 콘크리트의 건조수축 및 크리프 (Shrinkage and Creep of Recycled Aggregate Concrete Using Pozzolanic Materials)

  • 문대중;임남웅;김양배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.637-642
    • /
    • 2002
  • In this study, the experiments of recycled aggregate concrete with fly ash and special blended slag powder or diatom calcined at 650$\circ$ were performed on compressive strength, shrinkage and creep. The compressive strength of concrete with recycled aggregate and pozzolanic materials were higher than that of concrete with crushed stone and OPC. On the other hand, the shrinkage and creep of concrete with recycled aggregate and pozzolanic materials was smaller than that of concrete with crushed stone and OPC. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and special blended slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom. Relationship between compressive strength and creep coefficient was shown to the linear relation like as $\sigma$$_{c}$= -30CF+404.4.

  • PDF

폐아스콘을 함유한 재생콘크리트의 강도발현 특성평가 (An effect of Reclaimed Asphalt Concrete on the Strength Development of Concrete using Recycled-Aggregate)

  • 이욱재;서기원;김학연;김남호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.205-208
    • /
    • 2004
  • The purpose of this study is to recycle waste concrete and reuse reclaimed asphalt concrete as a concrete coarse aggregate. In this experiment, recycled coarse aggregate was substitute for natural crushed aggregate at the rate of 0, 30, $50\%$, and reclaimed asphalt concrete was substitute for recycled coarse aggregate at the rate of 0, 10, 20, $30\%$. According to the experimental results, as the reclaimed asphalt concrete content has influence on the properties of recycled aggregate concrete such as compressive and tensile strength, the criteria for the substitute ratio should be required to be set.

  • PDF

Fractal equations to represent optimized grain size distributions used for concrete mix design

  • Sebsadji, Soumia K.;Chouicha, Kaddour
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.505-513
    • /
    • 2020
  • Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구 (The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate)

  • 최세진;김도빈;이경수;김영욱
    • 한국건축시공학회지
    • /
    • 제19권4호
    • /
    • pp.313-322
    • /
    • 2019
  • 본 연구는 최근 사용량이 증대하고 있는 저시멘트 배합을 대상으로 국내생산 인공경량 잔 굵은골재의 혼합비율에 따른 경량콘크리트의 물성 및 강도특성을 비교 검토한 것으로서 실험결과, 프리웨팅 시간이 24시간 증가할 경우 모르타르 플로우값이 약 3~5% 감소하는 것으로 나타났으며 경량잔골재 사용에 의해 모르타르 배합에서 약 10.4%의 기건단위질량 감소효과를 얻을 수 있는 것으로 나타났다. 또한 경량굵은골재의 혼합비율에 따른 경량콘크리트의 기건단위질량은 5~10mm 크기인 LWG10 경량굵은골재의 혼합비율이 높아질수록 선형적으로 기건단위질량이 증가하였으며 LWG10 경량굵은골재를 혼합할 경우 LWG10 혼합비율에 관계없이 재령 7일에 약 30~31MPa 수준의 유사한 압축강도를 발현하였다.

Mechanical properties of recycled fine glass aggregate concrete under uniaxial loading

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.275-285
    • /
    • 2015
  • This paper reports the results of an experimental study on the compressive strength and the stress-strain curve (SSC) of recycled fine glass aggregate concrete with different replacement percentages of recycled fine glass aggregate. The results show that the recycled fine glass aggregate contents have significant impact on the workability, compressive strength, the elastic modulus, the peak and the ultimate strains of recycled fine glass aggregate concrete. Analytical expressions for the stress-strain relationship of recycled fine glass aggregate concrete are given, which can satisfactorily describe the effect of the recycled fine glass aggregate on the SSC.