Browse > Article
http://dx.doi.org/10.12989/cac.2020.26.6.505

Fractal equations to represent optimized grain size distributions used for concrete mix design  

Sebsadji, Soumia K. (LMST Lab., Department of Civil Engineering, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO MB))
Chouicha, Kaddour (LMST Lab., Department of Civil Engineering, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO MB))
Publication Information
Computers and Concrete / v.26, no.6, 2020 , pp. 505-513 More about this Journal
Abstract
Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.
Keywords
particle size distribution; grain number; fractal dimension; mathematical model; concrete mix design; optimization; concrete skeleton; coarse to fine aggregate ratio; fines content;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Chung, S.Y., Elrahman, M.A. and Stephan, D. (2017), "Effect of different gradings of lightweight aggregates on the properties of concrete", Appl. Sci., 7(6), 1-15. https://doi.org/10.3390/app7060585.   DOI
2 Cook, M.D., Ghaeezadah, A. and Ley, M.T. (2018), "Impacts of coarse-aggregate gradation on the workability of slip-formed concrete", J. Mater. Civil Eng., 30(2), 1-8. https://doi:10.1061/(ASCE)MT.1943-5533.0002126.   DOI
3 Esmaeilkhanian, B., Khayat, K.H. and Wallevik, O.H. (2017), "Mix design approach for low-powder self-consolidating concrete: Eco-SCC-content optimization and performance", Mater. Struct. Constr., 50(2), 1-18. https://doi:10.1617/s11527-017-0993-y.   DOI
4 Yu, Q.L., Spiesz, P. and Brouwers, H.J.H. (2015), "Ultra-lightweight concrete: Conceptual design and performance evaluation", Cement Concrete Compos., 61, 18-28. https://doi.org/10.1016/j.cemconcomp.2015.04.012.   DOI
5 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres", Constr. Build. Mater., 79, 273-282. https://doi:10.1016/j.conbuildmat.2015.01.050.   DOI
6 Rudy, A. and Olek, J. (2012), "Optimization of mixture proportions for concrete pavements, influence of supplementary cementitious materials, paste content and aggregate gradation", Publication FHWA/IN/JTRP-2012/34. Joint Transportation Research Program, Indiana Dpt. of Transportation and Purdue University, West Lafayette, Indiana, USA. https://doi:10.5703/1288284315038.
7 Sebsadji, S.K. and Chouicha, K. (2012), "Determining periodic representative volumes of concrete mixtures based on the fractal analysis", Int. J. Solid. Struct., 49(21), 2941-2950. https://doi:10.1016/j.ijsolstr.2012.05.017.   DOI
8 Sohail, M.G., Wang, B., Jain, A., Kahraman, R., Ozerkan, N.G., Gencturk, B., Dawood, M. and Belarbi, A. (2018), "Advancements in concrete mix designs: High-performance and ultrahigh-performance concretes from 1970 to 2016", J. Mater. Civil Eng., 30(3), 04017310. https://doi:10.1061/(ASCE)MT.1943-5533.0002144.   DOI
9 Sun, H.Q. and Ding, J. (2011), "The comparison of fractal dimensions of cracks on reinforced concrete beam", Adv. Mater. Res., 291-294, 1126-1130. https://doi:10.4028/www.scientific.net/AMR.291-294.1126.   DOI
10 Tang, Z., Dong, X., Chai, B. and Yang, Y. (2014), "Evaluation of particle size distribution of coal gangue through fractal method in Dongkuang Mine, Heshan, China", J. Mater. Civil Eng., 26(8), 06014018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001045.   DOI
11 Wang, Z., Cheng, Q., Cao, L., Xia, Q. and Chen, Z. (2007), "Fractal modelling of the microstructure property of quartz mylonite during deformation process", Math. Geol., 39(1), 53-68. https://doi:10.1007/s11004-006-9065-5.   DOI
12 Urumovic, K. (2016), "The referential grain size and effective porosity in the Kozeny-Carman model. Hydrol", Earth Syst. Sci., 20(5), 1669-1680. https://doi:10.5194/hess-20-1669-2016.   DOI
13 Vogt, C. (2010), "Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design", Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden.
14 Wang, X., Wang, K., Taylor, P. and Morcous, G. (2014), "Assessing particle packing based self-consolidating concrete mix design method", Constr. Build. Mater., 70(11), 439-452. https://doi:10.1016/j.conbuildmat.2014.08.002.   DOI
15 Yang, X., Wang, F., Yang, X. and Zhou, Q. (2017), "Fractal dimension in concrete and implementation for meso-simulation", Constr. Build. Mater., 143, 464-472. https://doi:10.1016/j.conbuildmat.2017.03.157.   DOI
16 Pan, Z., Wang, D., Ma, R. and Chen, A. (2018), "A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles", Comput. Concrete, 22(6), 551-561. https://doi:10.12989/cac.2018.22.6.551.   DOI
17 Yousuf, S., Sanchez, L.F.M. and Shammeh, S.A. (2019), "The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry", J. Build. Eng., 25, 100815. https://doi.org/10.1016/j.jobe.2019.100815.   DOI
18 Yu, Q.L. and Brouwers, H.J.H. (2012), "Development of a selfcompacting gypsum-based lightweight composite", Cement Concete. Compos., 34(9), 1033-1043. https://doi:10.1016/j.cemconcomp.2012.05.004.   DOI
19 Li, S., Dong, Q., Ni, F., Jiang, J. and Han, Y. (2018), "Evaluation of susceptibility of high-temperature performance of asphalt mixture to morphological feature of aggregates by Fractal theory", J. Mater. Civil Eng., 30(11), 1-8. https://doi:10.1061/(ASCE)MT.1943-5533.0002498.   DOI
20 Oreste, P. and Castellano, M. (2012), "An applied study on the debris recycling in tunneling", Am. J. Environ. Sci., 8(2), 179-184. https://doi:10.3844/ajessp.2012.179.184.   DOI
21 Fennis, S.A.A.M. and Walraven, J.C. (2012), "Using particle packing technology for sustainable concrete mixture design", Heron, 57(2), 73-101. http://resolver.tudelft.nl/uuid:93af1749-0b97-416a-ba27-907ae4921a7f.
22 Prokopski, G. and Konkol, J. (2005), "The fractal analysis of the fracture surface of concretes made from different coarse aggregates", Comput. Concrete, 2(3), 239-248. https://doi.org/10.12989/cac.2005.2.3.239.   DOI
23 Ren, W. and Xu, J. (2017), "Fractal characteristics of concrete fragmentation under impact loading", J. Mater. Civil Eng., 29(4), 1-9. https://doi:10.1061/(ASCE)MT.1943-5533.0001764.   DOI
24 Richardson, D.N. (2005), "Aggregate gradation optimization, Literature search", Report N° RDT 05-001, RI 98-035, Missouri University of Science and Technology, Rolla, USA.
25 Fujikawa, M., Sakai, T. and Aoki, S. (2003), "Application of fractal analysis to quantitative evaluation of three-dimensional shape irregularity of concrete aggregates", Mater. Sci. Res. Int., 9(1), 102-107. https://doi:10.2472/jsms.52.3appendix_102.   DOI
26 He, H. (2010), "Computational modelling of particle packing in concrete", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
27 He, H., Stroeven, P., Stroeven, M. and Sluys, L.J. (2012), "Optimization of particle packing by analytical and computer simulation approaches", Comput. Concrete, 9(2), 119-131. http://data.doi.or.kr/qr/10.12989/cac.2012.9.2.119.   DOI
28 Lu, Q., Qiu, Q., Zheng, J., Wang, J. and Zeng, Q. (2019), "Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability", Constr. Build. Mater., 228, 116986. https://doi:10.1016/j.conbuildmat.2019.116986.   DOI
29 Liu, X., Qu, S., Chen, R. and Chen, S. (2018), "Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials", J. Mater. Civil Eng., 30(8), 1-8. https://doi:10.1061/(ASCE)MT.1943-5533.0002365.   DOI
30 Liu, Y. and Jeng, D.S. (2019), "Pore structure of grain-size fractal granular material", Mater., 12(13), 2053. https://doi:10.3390/ma12132053.   DOI
31 Mueller, F.V. (2012), "Design criteria for low binder self-compacting concrete, Eco-SCC", Ph.D. Dissertation, Reykjavik University, Iceland.
32 Martineau, B. (2017), "Formulation of a general gradation curve and its transformation to equivalent sigmoid form to represent grain size distribution", Road Mater. Pavement Des., 18(1), 199-207. https://doi:10.1080/14680629.2015.1124048.   DOI
33 Mehdipour, I. and Khayat, K.H. (2017), "Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste", Cement Concrete Compos., 78, 120-131. https://doi:10.1016/j.cemconcomp.2017.01.005.   DOI
34 Moini, M., Sobolev, K., Flores-Vivian, I. and Amirjanov, A. (2019), "Modeling and experimental evaluation of aggregate packing for effective application in concrete", J. Mater. Civil Eng., 31(3), 1-10. https://doi:10.1061/(ASCE)MT.1943-5533.0002628.   DOI
35 Nincevic, K., Boumakis, I., Marcon, M. and Wan-Wendner, R. (2019), "Aggregate effect on concrete cone capacity", Eng. Struct., 191(8), 358-369. https://doi:10.1016/j.engstruct.2019.04.028.   DOI
36 Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y. and Li, H. (2017), "Effect of constituents on rheological properties of fresh concrete-A review", Cement Concrete Compos., 83, 146-159. https://doi:10.1016/j.cemconcomp.2017.07.016.   DOI
37 Hettiarachchi, H.A.C.K. and Mampearachchi, W.K. (2019), "Validity of aggregate packing models in mixture design of interlocking concrete block pavers (ICBP)", Road Mater. Pavement Des., 20(2), 462-474. https://doi:10.1080/14680629.2017.1393001.   DOI
38 Hunger, M. (2010), "An integral design concept for ecological self-sompacting concrete", Ph.D. Dissertation, Eindhoven University of Technology, The Netherlands.
39 Hunger, M. and Brouwers, H.J.H. (2006), "Development of Self-Compacting Eco-Concrete", Proceedings 16th IBausil, International Conference on Building Materials, Weimar, Germany, September.
40 Issa, M.A., Issa, M.A., Islam, M.S. and Chudnovsky, A. (2003), "Fractal dimension-a measure of fracture roughness and toughness of concrete", Eng. Fract. Mech., 70(1), 125-137. https://doi:10.1016/S0013-7944(02)00019-X.   DOI
41 Jin, S., Zhang, J. and Han, S. (2017), "Fractal analysis of relation between strength and pore structure of hardened mortar", Constr. Build. Mater., 135, 1-7. https://doi:10.1016/j.conbuildmat.2016.12.152.   DOI
42 Keke, S., Xiaoqin, P., Shuping, W. and Lu, Z. (2019), "Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate", J. Clean. Prod., 232, 508-517. https://doi:10.1016/j.jclepro.2019.05.254.   DOI
43 Khan, A., Do, J. and Kim, D. (2016), "Cost effective optimal mix proportioning of high strength self-compacting concrete using response surface methodology", Comput. Concrete, 17(5), 629-638. http://dx.doi.org/10.12989/cac.2016.17.5.629.   DOI
44 Bu, J., Chen, X., Liu, S., Li, S. and Shen, N. (2018), "Experimental study on the dynamic behavior of pervious concrete for permeable pavement", Comput. Concrete, 22(3), 291-303. https://doi:10.12989/cac.2018.22.3.291.   DOI
45 Lecomte, A. and Thomas, A. (1992), "Caractère fractal des melanges granulaires pour betons de haute compacite", Mater. Struct., 25(5), 255-264. https://doi:10.1007/BF02472666.   DOI
46 Li, L.G. and Kwan, A.K.H. (2013), "Concrete mix design based on water film thickness and paste film thickness", Cem. Concr. Compos., 39, 33-42. https://doi:10.1016/j.cemconcomp.2013.03.021.   DOI
47 Abdul Hassan, N., Airey, G.D. and Hainin, M.R. (2014), "Characterisation of micro-structural damage in asphalt mixtures using image analysis", Constr. Build. Mater., 54, 27-38. https://doi:10.1016/j.conbuildmat.2013.12.047.   DOI
48 Ashraf, W. and Noor, M.A. (2011), "Performance-evaluation of concrete properties for different combined aggregate gradation approaches", Procedia Eng., 14, 2627-2634. https://doi:10.1016/j.proeng.2011.07.330.   DOI
49 Brouwers, H.J.H. and Radix, H.J. (2005), "Self-compacting concrete: Theoretical and experimental study", Cement Concrete Res., 35(6), 2116-2136. https://doi:10.1016/j.cemconres.2005.06.002.   DOI
50 Chen, Y.Y., Tuan, B.L.A. and Hwang, C.L. (2013), "Effect of paste amount on the properties of self-consolidating concrete containing fly ash and slag", Constr. Build. Mater., 47, 340-346. https://doi:10.1016/j.conbuildmat.2013.05.050.   DOI
51 Chouicha, K. (2006), "La dimension fractale et l'etendue granulaire comme paramètres d'identification des melanges granulaires", Mater. Struct., 39(7), 665-681. https://doi:10.1617/s11527-006-9113-0.   DOI