• Title/Summary/Keyword: Concrete admixture

Search Result 869, Processing Time 0.026 seconds

An Experimental Study on the Mechanical Properties of Recycled Aggregate Concrete Containing Admixtures (혼화재를 사용한 재생굵은골재 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 백철우;김호수;반성수;최성우;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.223-228
    • /
    • 2003
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste is rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregates for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the mechanical properties of concrete with recycled coarse aggregate were investigated for types of mineral admixture and the substitution of recycled coarse aggregate. The result of this study, in case of using mineral admixture, the property of fresh concrete was rised. And the property of harden concrete for the substitution ratio of recycled coarse aggregate was decreased. But the property of concrete with mineral admixture was better than that of concrete used only cement.

  • PDF

The Experience Study on the Floating Properties of High Flow Concrete on volum of Coarse Aggregate used Admixture (굵은골재 체적에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Ho-So;Baek, Chul-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • There are many factors that affect on the flowing properties of high flowing concrete(HFC), which are fluidity, compactibility, non-segregation ability and fillingability. And because the aggregate which is one of the factors occupies high volume in concrete, it has a much effect on the properties of high flowing concrete according to its size, quality and quantity etc. This is an experimental study to analyze the effect of admixture and volume of coarse aggregate in concrete on the flowing properties of high flowing concrete. For this purpose, the kinds of admixture are fly-ash and blast furnace slag. Also volume of coarse aggregate in concrete are 280, 290, 300, 310, 320 $(\ell/m^3)$. The test of flowablity properties is slump-flow, Air content, V-lot, L-Flow. According to test results, it was found that the compactibility of HFC is more superior to use blast furnace slag than other, and according .to kind of admixture, most compatible volume of coarse are different. Also when used blast furnace slag, the volume of coarse are increased than used fly-ash.

  • PDF

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.

Statistical Evaluation of Mix proportion Factor of Antiwashout Underwater Concrete (통계적 분석에 의한 수중불분리성콘크리트 배합인자의 특성)

  • 원종필;임경하;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.66-76
    • /
    • 2001
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aims of this research is statistically evaluated to mix proportion factor of antiwashout underwater concrete. Experiment was performed to analyze the influence variables(cement, water, and antiwashout admixture) on fundamental characteristics of antiwashout underwater concrete. The influence variables can be considered for use in a wide range of underwater work where their have statistically significant effect on the characteristics(fluidity, filling ability, resistance to washout, etc.) of antiwashout underwater concrete.

  • PDF

A Study on the Flexural Rigidity Change according to Quantities Characteristics of Waterproof Admixture for Concrete (콘크리트용 수밀 혼화재 첨가량에 따른 휨 강도 변화추이 연구)

  • Choi, Su-Young;Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.128-129
    • /
    • 2017
  • Concrete properties alone cannot provide satisfactory waterproof performance because concrete can generate cracks due to possible problems in design, construction and curing process, and various environmental factors. Therefore, concrete structures require installing waterproofing layers for concrete protection and various types of construction methods are currently being applied. The purpose of this study is to investigate the concrete strength changes when waterproofing admixtures are mixed into the concrete. The results of flexural strength testing confirmed that the initial strength of concrete specimens with the admixtures was lower than that of the concrete specimen without the admixture based on different curing periods.

  • PDF

An Experimental Study on Application of Waterproofing admixture of Powder (구체혼화용 분말방수재의 적용성에 관한 실험적 연구)

  • 강희권;송제영;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.65-70
    • /
    • 2004
  • The purpose of this study is to offer the basic information of waterproofing admixture of powder for field application. Through before study and fly ash in mortar, Various properties as fly ash ratio in concrete were checked. According to the experimental result, it was shown that proper Waterproofing admixture of powder increased by cement weight in concrete was generally positive effort to flowing, compressive strength, suction ratio of water, length of ratio. So if Waterproofing admixture of powder il well done quality considered as good in application of concrete.

  • PDF

Study about cracking reducing of the concrete by utilizing fiber-reinforced admixture (섬유보강재 혼입비율 및 길이에 따른 콘크리트 균열제어에 관한 연구)

  • Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Gyeong-Sik;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.144-145
    • /
    • 2014
  • Nowadays, as to increased the workability of the press concrete and decrease the cracking, the fiber-reinforced admixture has been widely used. As the low adhesion force between the paste and fiber-reinforced admixture, it was considered as could not be used in the structure. Even more, as the loss of flowability and the exposure of the fiber, further study is needed. In this study, as the different environment and position of the building, the dosages of the fiber-reinforced admixture has also been changed. The fundamental properties and cracking of fiber-reinforced concrete have been tested.

  • PDF

The Effect of Antiwashout Admixture and Corrosion Inhibitor on the Seawater Concrete (해수 콘크리트에 대한 수중불분리 혼화제와 방청제의 효과에 관한 연구)

  • Kang, Hyun-Ju;Lee, Kyung-Hee;Cho, In-Sung;Han, Sub-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.970-976
    • /
    • 2002
  • In this paper, the slump flow of the concrete, suspension, pH, corrosion effect, bleeding and the characteristics of coompressive strength were analyzed using antiwashout underwater admixture and antiwashout underwater agent+corrosion inhibitor mixed admixtures(1type). The results showed that there were no rare difference in physical properties but in the results of rapid corrosion tests there were lots of corrosion inhibitor ratio differences between concrete using only antiwashout underwater admixture and the corrosion inhibitor mixed(1type). In the case of only antiwashout underwater admixture 5.4%, the case corrosion inhibitor mixed(1type) 0.07%, the Antiseawater of the concrete which uses the Corrosion Inibitor Mixed(1type) appeared highly.

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Evaluation of Strengthening Capacity of Axial Member Using Admixture-Modified Mortar (혼화재 첨가 모르터를 이용한 압축부재의 보강성능 평가)

  • 박준명;양동석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • Strength and Durability of reinforced concrete exposed at deteriorated environment are decreased by cover spatting and corrosion of reinforcement. The purpose of this paper is to evaluate capacity of strengthening axial member using admixture-modified mortar. To investigate the capacity of strengthened axial member, behavior and strength of strengthening specimens were compared with a monolithic basic specimen. Admixture-modified mortar was prepared with silica fume, zeolite, polymer as cement modifier. From the result of this experiment, strengthening specimens using polymer-modified mortar have apparrent strengthening capacity because of good flexural strength and tensile strength.

  • PDF