• Title/Summary/Keyword: Concrete Surface Roughness

Search Result 81, Processing Time 0.028 seconds

Properties on the penetration of airborne chlorides to the surface roughness of concrete (콘크리트의 표면거칠기에 따른 비래염분 침투 특성)

  • Lee, Jong-Suk;Choi, Won-Sung;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.273-276
    • /
    • 2006
  • Airborne chlorides is moved to inland by sea wind and attach to the surface of concrete then penetrated into concrete. In addition, concrete structures are greatly affected by salt attack primarily due to airborne chlorides like it can be seen through the corrosion of rebar. Therefore, it is important to review the relationship among airborne, surface and penetrated chlorides. In this study, airborne, surface and penetrated chlorides were examined in terms of surface roughness of concrete. The results showed that penetrated and surface chlorides have close relationship with surface roughness of concrete.

  • PDF

The Effects of Surface Coating Material for Aluminum Form on Surface Quality of the Concrete (알루미늄 거푸집 표면코팅재가 콘크리트 표면품질에 미치는 영향)

  • Han, Cheon-Goo;Park, Jae-Soon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • This study is to analyze the effects of aluminum form surface coating material on surface quality of concrete. When observing the surface quality of concrete affected by the change of aluminum form surface coating material, in general, as the number of use of the coating material increased, the surface quality of concrete decreased and good surface quality was shown in plywood (hereinafter PW). For epoxy (hereinafter EP) resin, when applying form remover, good surface quality was shown. For the surface roughness of concrete by the application form oil of form remover and the number of use of the coating material, as the number of use increased, highest surface roughness value was shown which meant the leveling was bad, but the surface roughness value in EP and PW was the lowest. Just for EP, when applying form remover, surface roughness value was low. For the number of void for concrete by the application of form remover and the number of use of the coating material, In general, the number of void which was generated when applying form oil the remover decreased.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating (콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구)

  • Park, Jin-Ho;Kim, Sang-Yeol;Lee, Han-Seung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

Quality Changes in Concrete According to the Number of Use of Aluminum Form Surface Coating Material (알루미늄 거푸집 표면코팅재의 전용횟수에 따른 콘크리트의 품질변화)

  • Lee, Il-Sun;Park, Byung-Kwan;Baek, Dae-Hyun;Park, Jae-Soon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.123-126
    • /
    • 2009
  • This study is analyzed the effects of the number of use of aluminum form surface coating material on surface quality of concrete. The results can be summarized as follows. Surface roughness showed larger values with increase in the number of use. Values were larger in UP and AL compared to PE. While found to have bad influence on concrete surface quality, PA and W showed most excellent values for roughness. The number of surface pores increased with increasing number of use, and the number of pores on concrete surface was reduced by applying a remover. In terms of type of surface coating material, PA and W showed smallest number of pores in comparison to PE. In order to comprehensively improve surface quality of concrete, parallel use of PA coating material and remover is deemed most appropriate.

  • PDF

FRACTAL SURFACE ROUGHNESS OF CONCRETE

  • Roh Y.S.;Xi Yunping;Chung L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.595-602
    • /
    • 2004
  • In this study, the roughness of fracture surfaces in cementitious material has been characterized by roughness number (RN). A systematic experimental investigation was carried out to examine the dependency of fracture parameters on the aggregate sizes as well as the loading rates. Three aggregate sizes (0.1875 in, 0.5 in, and 0.75 in) and two loading rates (slow and fast loading rate) were used. A total of 52 compression tests and 53 tension tests were performed. All fracture parameters exhibited an increase, to varying degrees, when aggregates were added to the mortar matrix. The fracture surfaces of the specimens were digitized and analyzed. Fracture roughness was monotonically increased as maximum aggregate sizes increase.

  • PDF

Application of Fractal Theory to Various Surfaces

  • Roh, Young-Sook;Rhee, In-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.23-28
    • /
    • 2006
  • In this study, the general theory of fractality is discussed to provide a fundamental understanding of fractal geometry applied to heterogeneous material surfaces like pavement surface and rock surface. It is well known that many physical phenomena and systems are chaotic, random and that the features of roughness are found at a wide spectrum of length scales from the length of the sample to the atomic scales. Studying the mechanics of these physical phenomena, it is absolutely necessary to characterize such multi scaled rough surfaces and to know the structural property of such surfaces at all length scales relevant to the phenomenon. This study emphasizes the role of fractal geometry to characterize the roughness of various surfaces. Pavement roughness and rock surface roughness were examined to correlate their roughness property to fractality.

A Study on the Surface Roughness of Corroded Reinforcing Rebar (부식된 철근의 표면 거칠기에 관한 연구)

  • Roh, Young-Sook;Lee, Sun-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • This paper discusses the surface roughness of corroded reinforcement rebar in reinforced concrete structures focusing on the quantitative measurement technique for rebar corrosion. Reinforcement rebar was corroded using accelerated corrosion induced method and corrosion rates were 0%, 1%, 2%, 3%, 5%, and 10% of mass losses. Using 3-dimensional scanner each surface profile of reinforcement rebar was established, and surface roughness was measured. Through tests and analyses of corroded reinforcement rebar, the following topics were particularly discussed: measurement of surface roughness, relationship between area and surface roughness, relationship between surface roughness and bond performance. As a result, surface roughness of corroded rebar was found to be very effective to bond strength until 2% of corrosion rate. It was also discussed how to relate surface roughness of corroded rebar to bond strength of reinforced concrete structures.

Surface Finishability of Concrete According to Degree of Damage and the Number of Uses of the Aluminum Form

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.522-529
    • /
    • 2013
  • As concrete forms, panel forms made of plywood used to be widely used, but recently a system form made of aluminum has been broadly adopted because of the advantages it offers in terms of constructability and economy. However, an aluminum form reacts with concrete, which is alkali, and creates hydrogen gas. As a result, air pockets occur on the concrete's surface, and its finishability deteriorates. Therefore, this research analyzed the relationship between the distribution of voids and surface roughness and the damage degree and number of uses of the aluminum form. The analysis of the distribution of voids shows that the number of voids of 0.1~1 mm, which are considered to have occurred because of chemical reaction, was 200~500 on the coating plywood, but was 1 500~2 000 on the aluminum form after 3 uses, and impossible to count after a higher number of uses. Surface roughness was $1.7{\sim}3.2{\mu}m$ on the coating plywood form, but was about $2.6{\mu}m$ after the first use and about $6.8{\mu}m$ after 10 uses, a 2.6-fold increase. Distribution of voids did not show a particular tendency depending upon the degree of damage to the concrete form, but surface roughness showed an increasing tendency as the degree of damage grows. Therefore, when using aluminum forms, surface maintenance should be carried out completely, such as prevention of damages to the form surface coating materials and spreading of separating materials on forms.

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.