• Title/Summary/Keyword: Concrete Sludge

Search Result 129, Processing Time 0.02 seconds

Study on the Development of Accelerator for Early Strength of Concrete using Industrial by-product (산업부산물을 활용한 조기강도 촉진제 기술 개발을 위한 연구)

  • Lee, Ji-Hwan;Lee, Jin-Woo;Lee, Jae-Sam;Lee, Kang-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this study utilize industry product for OPC(ordinary portland cement) and BFS(blast furnace slag) mixing concrete early age compressive strength elevation and executed study for high strength binder. Association ratio of industry product for high strength binder manufacture is Titanogypsum (4) : Limestone (3) : Waterworks Sludge by ratio of (3) as it is proper move. high strength binder mixing rate appeared that (7~9) % are proper via preliminary test. Could confirm that display high compressive strength incidence rate in early age than plain harmony according as mix high strength binder mixing concrete compressive strength high strength binder. Also, high strength binder generality that give function than high strength binder used in existing displayed more excellent intensity, and compressive strength displayed result that multiply single breadth according as high strength binder substitute that give function increases.

  • PDF

Functional Drainage Evaluation of Block Paving through the Usage of Sludge and Wheel Tracking Test (슬러지 투입 및 휠트랙킹 시험을 이용한 블록 포장의 기능적 투수평가)

  • Lee, Sang-Yum;Jung, Hoon-Hee;Mun, Sung-Ho;Park, Dae-Geun;Park, Kyong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • As the percentage of permeable ground is reduced due to the increased impermeable roads of major cities, a heat island phenomenon can be dominantly observed, resulting in increased temperature. In addition, rainfall that would have been naturally absorbed and retained by the permeable ground is overflowed due to large volumes of run-off water, resulting in more sewer failures and increased erosion. In terms of permeable pavement system, block paving has been used anywhere as well as provides many years of service. The permeable block paving is an effective alternative to the more traditional asphalt or plain concrete for minor roads; furthermore, it looks a lot better than other pavements. In this study, the functional drainage evaluation of block paving was carried out, considering the usage of experimental sludge and wheel tracking test, in order to simulate the field condition of roads.

A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash (하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The preparation of porous lightweight materials as well as the measurement of physical properties has been performed by using SSA(sewage sludge ash) as the raw material. For this aim, two types of lightweight filler, that is, perlite and silica sphere were employed respectively and bentonite was also used as an inorganic binder. The properties of lightweight specimen calcined at 1,000 were measured in terms of density, compressive strength, thermal conductivity and sound absorption to examine the effect of material composition as well as the preparation condition on the properties of lightweight material. As a result, the density of specimen prepared with perlite was ranged from 1.23 to $1.37g/cm^3$ and the compressive strength was ranged from 242.3 to $370.5kg/cm^2$. In case of specimen prepared with silica sphere, it was found that the compressive strength was less than $100kg/cm^2$ even though density was lower than that of specimen with perlite. As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to $0.5W/m^{\circ}K$ depending on material composition so that the insulation effect was superior to conventional concrete.

A Study on the Pelletization of Powdered Radioactive Waste by Roll Compaction (롤 컴팩션을 이용한 분말 방사성폐기물의 펠렛화 연구)

  • Song, Jong-Soon;Lim, Sang-Hyun;Jung, Min-Young;Kim, Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2019
  • Disposal nonconformity of radioactive wastes refers to radioactive wastes that need to be treated, solidified and packaged during operation or decommissioning of NPPs, and are typically exemplified by particulate radioactive wastes with dispersion characteristics. These wastes include the dried powders of concentrated wastes generated in the process of operating NPPs, slurry and sludge, various powdered wastes generated in the decommissioning process (crushed concrete, decontamination sludge, etc.), and fine radioactive soil, which is not easy to decontaminate. As these particulate wastes must be packaged so that they become non-dispersive, they are solidified with solidification agents such as cement and polymer. If they are treated using existing solidification methods, however, the volume of the final wastes will increase. This drawback may increase the disposal cost and reduce the acceptability of disposal sites. Accordingly, to solve these problems, this study investigates the pelletization of particulate radioactive wastes in order to reduce final waste volume.

Analysis of Heavy Metal Concentration in Construction By-Products using Laser-Induced Breakdown Spectroscopy and Membrane Techniques (레이져 유도 플라즈마 분광법(LIBS)과 멤브레인을 활용한 건설용 부산물 내 중금속 분석에 관한 연구)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.113-121
    • /
    • 2023
  • In this study, the applicability and reproducibility of laser induced breakdown spectroscopy(LIBS) for heavy metal analysis in clinker and 5 types of by-products(crushed stone sludge, blast furnace slag, steel slag, waste concrete sludge, bottom ash) were experimentally reviewed. As a result of ICP-MS, XRF, and LIBS analysis of the six samples, the difference between ICP and XRF was confirmed in the quantitative analysis, but the LIBS analysis showed a difference by element from the standard analysis, and only qualitative analysis of the sample was possible. LIBS analysis wavelength was set for three types of heavy metals(Cd - 214.44nm, Pb - 405.78nm, Hg - 253.65nm). As a result of laser irradiation on the surface of the membrane impregnated with a solution of each concentration(1~1000ppm) and dried, the correlation between the spectral intensity and the concentration was confirmed.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

Rational Method of CLSM Mixture with Sewage Sludge Cinder (하수슬러지를 활용한 저강도 콘크리트의 합리적 배합방법)

  • Kim, Dong-Hun;Takashi, Horiguchi;Lim, Nam-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.465-472
    • /
    • 2012
  • This research aims to find an effective mixing method for controlled low strength material (CLSM) using diverse recycled industrial byproducts. This study is a fundamental research to develop and commercialize a resource-recycling CLMS that can greatly contribute to cost reduction and environmental stress relief. In the past, few studies have been performed on CLSM in Korea. This research is expected to provide fundamental data not only for development and commercialization of the resource-recycling CLSM satisfying required material performances but also serve as a ground breaking study on utilization of recycled material in construction industry and ultimately leading to advanced resource-recycling practices at national level. From the comprehensive analysis of minimum unit quantity for maximum strength and material segregation prevention, it was found that the optimal mixing condition for mixing FSD, RSID and SD material to filler-aggregate ratio (f/a) was approximately 50.

Leaching Properties of Hexavalent Chromium in Sintering Condition of Clinker material (클링커 원료의 소성 조건에 따른 6가 크롬 용출 특성)

  • Lee, Jung-Hui;Park, Nam-Kyu;Jung, Yon-Jo;Chu, Yong-Sik;Song, Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.549-552
    • /
    • 2008
  • The cement is accomplished with CaO, SiO2, Al2O3 and Fe2O3, etc. After pulverizing materials of the limestone, the sand and the clay(shale), iron ore, the cement becomes clinker materials sintering from the rotary kiln of oxidizing atmosphere. The part in the materials of the clinker is substituted with slag, sludge etc. and it is used. because The chromium which is to be included in the clinker materials, in sintering process hexavalent chromium is converted with the chrome. Consequently it changed the type and a content of clinker materials and test hexavalent chromium of the clinkers which is manufactured.

  • PDF

Application and Adequacy Evaluation of Mobile Sewage Treatment Facilities for Concrete Wastewater Treatment Generated during Construction (공사 중 발생되는 콘크리트 폐수처리를 위한 이동식 오수처리 시설의 적용 및 적정성 평가)

  • Wooseok Jeong;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • Some concrete wastewater generated during construction is in the form of non-point pollution sources that workers, managers, and users are unaware of, and it is not easy to manage as it flows through sewage pipes. Due to these characteristics, construction sludge is inflow into rivers and sewage pipes in the form of non-point pollution sources in an unmanaged state. This study applied the D.W.S method to the concrete retaining wall removal method installed on the road, and the resulting concrete wastewater was physically and chemically treated through a mobile sewage treatment facility, and it was examined whether it met the removal efficiency and wastewater discharge acceptance standards. Accordingly, it is intended to meet the standards for effluent concentration of wastewater during construction by removing 73.5% of BOD and 89.1% of SS through physical and chemical treatment through portable sewage treatment facilities during construction. In addition, we would like to review the adequacy and economic analysis of calculating environmental conservation costs for physicochemical treatment through portable sewage treatment facilities and sewage treatment generated during construction.

Study on preparation of precipitated calcium carbonate using recycling water of ready-mixed Concrete (레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구)

  • Shin, Jae Ran;Kim, Jae Gang;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.232-238
    • /
    • 2016
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. Also a shuttle mechanism of wet chemical absorption using MEA was utilized. The high concentration $CO_2$(A) and exhaust gas(B) was used for collecting carbon dioxide in the 30% MEA aqueous solution, and $CO_2$ was fixed with rate of 0.35 mg of $CO_2$ per mg of sludge through the liquid carbonation process. It was found from SEM data that calcium carbonate was mainly made up with spherical vaerite with the mixing of a small quantity of calcite.