DOI QR코드

DOI QR Code

A Study on the Pelletization of Powdered Radioactive Waste by Roll Compaction

롤 컴팩션을 이용한 분말 방사성폐기물의 펠렛화 연구

  • Received : 2019.01.28
  • Accepted : 2019.06.04
  • Published : 2019.06.30

Abstract

Disposal nonconformity of radioactive wastes refers to radioactive wastes that need to be treated, solidified and packaged during operation or decommissioning of NPPs, and are typically exemplified by particulate radioactive wastes with dispersion characteristics. These wastes include the dried powders of concentrated wastes generated in the process of operating NPPs, slurry and sludge, various powdered wastes generated in the decommissioning process (crushed concrete, decontamination sludge, etc.), and fine radioactive soil, which is not easy to decontaminate. As these particulate wastes must be packaged so that they become non-dispersive, they are solidified with solidification agents such as cement and polymer. If they are treated using existing solidification methods, however, the volume of the final wastes will increase. This drawback may increase the disposal cost and reduce the acceptability of disposal sites. Accordingly, to solve these problems, this study investigates the pelletization of particulate radioactive wastes in order to reduce final waste volume.

처분 부적합 폐기물이란 원전운영이나 해체 시 처리, 고화 및 포장이 요구되는 방사성폐기물 등을 일컬으며, 대표적으로 분산 특성을 갖는 입자성 방사성폐기물을 예로 들 수가 있다. 이들 폐기물에는 원전 운영과정에서 발생되는 농축폐액의 건조분말, 슬러리 및 슬러지, 향후 원전 해체과정에서 발생되는 온갖 분말 상태의 폐기물(콘크리트 파쇄물, 제염 슬러지 등), 그리고 제염이 용이치 못한 미세 크기의 방사능오염 토양 등이 있다. 입자성 폐기물을 기존의 고화방식으로 처리할 경우에는 최종 폐기물의 부피가 증가하는 단점을 갖게 되어 처분 비용의 증가 및 처분장의 수용성을 감소하는 결과를 야기할 수가 있다. 따라서 이들 문제를 해결하고자 본 연구에서는 최종 폐기물 부피의 감용화를 위해 롤 압축 기술을 이용하여 분말의 펠렛화 연구를 수행하였다.

Keywords

References

  1. Nuclear Safety and Security Commission, Low and Intermediate Level Radioactive Waste Management Regulations, NSSC Notice No. 2017-60 (2017).
  2. Ministry of Trade, Industry and Energy, Radioactive Waste Acceptance Criteria, MOTIE Notice No. 2016-230 (2016).
  3. Korea Radioactive Waste Agency, Radwaste Acceptance Criteria, LILW-Operation-Radiation-028.
  4. Korea Electric Power Corporation Research Institute of Technology, Development of radioactive waste solidification process program, KRC-87N-J05 (1989).
  5. H. Masuda, K. Higashitani, and H. Yoshida, Power Technology Handbook, 3rd ed., 599-613, CRC Press, New York (2006).
  6. J.R. Johanson, "A Rolling Theory for Granular Solids", J. Appl. Mech., 32(4), 842-848 (1965). https://doi.org/10.1115/1.3627325
  7. G. Reynolds, R. Ingale, R. Roberts, S. Kothari, and B. Gururajan, "Practical Application of Roller Compaction Process Modeling", Comput. Chem. Eng., 34(7), 1049-1057 (2010). https://doi.org/10.1016/j.compchemeng.2010.03.004
  8. G. Bindhumadhavan, J.P.K. Seville, M.J. Adams, R.W. Greenwood, and S. Fitzpatrick, "Roll Compaction of a Pharmaceutical Excipient: Experimental Validation of Rolling Theory for Granular Solids", Chem. Eng. Sci., 60(14), 3891-3897 (2005). https://doi.org/10.1016/j.ces.2005.02.022
  9. A.R. Muliadi, J.D. Litster, and C.R. Wassgren, "Modeling the Powder Roll Compaction Process: Comparison of 2-D Finite Element Method and The Rolling Theory For Granular Solids (Johanson's Model)", Powder Technol., 221, 90-100 (2012). https://doi.org/10.1016/j.powtec.2011.12.001
  10. Y.A. Yusof, A.C. Smith, and B.J. Briscoe, "Roll Compaction of Maize Powder", Chem. Eng. Sci., 60(14), 3919-3931 (2005). https://doi.org/10.1016/j.ces.2005.02.025
  11. H.R. Karimi and S.S. Djokoto, "Instrumentation and Modeling of High-pressure Roller Crusher for Silicon Carbide Production", Int. J. Adv. Manuf. Technol., 62(9-12), 1107-1113 (2012). https://doi.org/10.1007/s00170-011-3871-8
  12. S.H. Hsu, G.V. Reklaitis, and V. Venkatasubramanian, "Modeling and Control of Roller Compaction for Pharmaceutical Manufacturing. Part I: Process Dynamics and Control Framework", J. Pharm. Innov., 5(1-2), 14-23 (2010). https://doi.org/10.1007/s12247-010-9076-0
  13. C. Jensen, "The Role of Advanced Polymer Solidification in a Comprehensive Plan for Handling, Storing and Disposing of Class B & C Resins and Filters", Proc. of EPRI International Low-Level Waste Conference, June 24-26, 2008, Orlando. Accessed Sep. 18 2018. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.8167&rep=rep1&type=pdf.