• 제목/요약/키워드: Concrete Characteristics

검색결과 3,880건 처리시간 0.031초

A Study on Engineering Characteristics of Asphalt Concrete Mixtures Using Filler with Recycled Waste Lime (부산석회를 채움재로 재활용한 아스팔트 혼합물의 공학적 특성)

  • Hwang, Sung-Do;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • 제7권3호
    • /
    • pp.71-78
    • /
    • 2005
  • This study focuses on finding out engineering characteristics of asphalt concrete mixtures using mineral fillers with recycled waste lime, which is a by-product in the Soda Ash(Na2CO3) production course. The materials tested in this study were made with 25%, 50%, 75% and 100% of mixing ratio based on the conventional mineral filler ratio to analyze the recycle possibility of the waste lime. The asphalt concrete mixtures with recycled waste lime and hydrated lime, and conventional asphalt concrete mixtures were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete mixtures at the wide range of temperatures. It is also found that the mixtures with recycled waste lime show higher resistance against stripping than conventional asphalt concrete mixtures. It is concluded from various test results that the waste lime can be used as mineral fillers and especially can greatly improve resistance to permanent deformation of asphalt concrete mixtures at high temperatures.

  • PDF

Evaluation of Mechanical Characteristics of Castor Oil Based Bio-Polymer Concretes for Ultra Thin Overlays (피마자유를 이용한 초박층 덧씌우기용 바이오 폴리머 콘크리트의 역학적 특성 평가)

  • Park, Hee Mun;Choi, Ji Young;Kim, Tae Woo;Ahn, Young Jun;Le, Van Phuc
    • International Journal of Highway Engineering
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.

The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement (고로슬래그와 플라이애시 대체율이 80MPa 3성분계 고강도콘크리트의 재료물성에 미치는 영향)

  • Lee, Bum-Sik;Jun, Myoung-Hoon;Lee, Do-Heun
    • Land and Housing Review
    • /
    • 제3권3호
    • /
    • pp.287-297
    • /
    • 2012
  • To develop 80MPa-high strength concrete with ternary cement used in OPC, blast-furnance slag, and fly ash, mixing ratio of blast-furnace slag and fly ash was evaluated in material characteristics before and after hardening of the high strength concrete. According to the evaluated results of material characteristics before and after hardening of the high strength concrete, the flowability and long-term compressive strength increase up to 30% mixing ratio of blast-furnace slag and fly ash. Also, it is superior to characteristics of length change and neutralization due to the use of mineral admixture when compared in test sample mixed with OPC. The evaluated results show that material characteristics of the high strength concrete was the most outstanding performance at blast-furnace slag of 25% and fly ash of 15%. The result of this study will be useful for the development of high strength concrete as a substitute of costly silica fume in the near future.

A Study on Fire Performance and Heat Transfer of HPC Column with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 전열 특성 및 화재 거동에 관한 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • 제22권1호
    • /
    • pp.29-39
    • /
    • 2010
  • In this study, experimental test and numerical analysis were conducted to investigate the heat transfer characteristics and fiber performance of high strength concrete. The fire characteristics of the high strength concrete that couldn't be obtained through the test due to specific requirements and restrictions were forecast using numerical analysis approach. The outcome from the numerical analysis and the test were compared to verify and improve the reliability of the analysis. A numerical analysis of 80 and 100 MPa high strength concrete cases were carried out to identify the heat transfer characteristics and fire behavior using software, ABACUS (V6.8) From the results of verification experiment, a 25~55% level of beam shrinkage reduction was observed compared to the concrete without Fiber-Cocktail, indicating the improved fire resistance performance, which appeared to be attributable to the function of Fiber-Cocktail that was able to control the heat transfer characteristics and ultimately result in enhancing the fire resistance performance.

Evaluation on Mix Characteristics of Concrete Using Fine Sand of Nakdong-River (낙동강 세사를 사용한 콘크리트의 배합특성 평가)

  • Bae, Su-Ho;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권3호
    • /
    • pp.1481-1488
    • /
    • 2013
  • The purpose of this experimental research is to suggest a base data to utilize the fine sand of Nakdong-River actively as an alternative aggregate for concrete. For this purpose, after the typical fine sand samples were collected at the mid stream and down stream of main stream of Nakdong-River, the physical properties of them and the mix characteristics of concrete using those were estimated. As a result, it was observed from the test result that mix characteristics between concrete using fine sand and concrete using well-graded reference sand made little differences since unit water content and unit cement content of concrete using fine sand increased only a little than those of concrete using reference sand for specified compressive strength.

An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete (슬래그 미분말 혼합 콘크리트의 공극구조와 염화물 확산계수와의 관계에 대한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Choi, Young-Cheol;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • 제21권5호
    • /
    • pp.639-647
    • /
    • 2009
  • In order to evaluate the durability of reinforced concrete structures under chloride attack from sea water and frost damage, it is important to analyze both the microstructural characteristics of concrete and its diffusion resistance of concrete against chloride ingress. In this study, a relation between micro-pore structures of concrete obtained by the Mercury Intrusion Porosimetry and accelerated chloride diffusivity as well as long term chloride diffusivity were studied for ground granulated blast furnace slag(GGBS) concrete. Different water-cement ratio of 40, 45, 50% and different unit cement concrete of 300, 350, 400 or 450 kg/$m^3$ of the GGBS concrete along with OPC concrete were used and freeze and thawing, and the change in diffusivity and microstructure were observed for both GGBS concrete and damaged GGBS concrete due to rapid freezing and thawing.

Experimental Techniques of Small-Scale Models for Reinforced Concrete Structural Researches (철근콘크리트구조 연구를 위한 소축적 구조모형실험기법)

  • Kim, Woo;Kim, Dae-Joong;Kang, Sung-Hoo
    • Magazine of the Korea Concrete Institute
    • /
    • 제3권4호
    • /
    • pp.133-142
    • /
    • 1991
  • When the behavior of a prototype concrete structure is studied through small-scale model experiments, it is necessary to reproduce all significant physical characteristics on either an one-to-one basis or a specific similitude relationship. Any distortion of similitude must be understood and its effect must be predictable. This paper focuses on improved physical modeling techniques for small-scale reinforced concrete structures. Particular emphasis is placed on the development of a model concrete mix to accurately model the important properties of full-scale prototype concrete. Four types of model reinforcement with different bond characteristics are also studied by testing twenty simple beams. The information obtained will be of immediate use to engineers contemplating small-scale modeling of reinforced concrete structures.

A Study on Mechanical Properties of Porous Concrete Using Cementless Binder

  • Lee, Jong-Won;Jang, Young-Il;Park, Wan-Shin;Kim, Sun-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.527-537
    • /
    • 2016
  • This study evaluated the mechanical characteristics and durability of porous concrete produced with a cementless binder based on ground granulated blast furnace slag (BFS), fly ash (FA) and flue gas desulfurization gypsum (CP). As a result, the void ratio was increased slightly from the target void ratio, by 1.12-1.42 %. Through evaluating the compressive strength, it was found that the compressive strength of porous concrete with cementless binder decreased in comparison to the compressive strength of porous concrete with ordinary Portland cement (OPC), but the difference was insignificant, at 0.6-1.4 MPa. Through the freeze-thawing test to evaluate the durability, it was found that the relative dynamic elastic modulus of porous concrete with cementless binder decreased to 60 % or less at 80 cycles. The result of the chemical resistance test showed that the mass reduction rate was 12.3 % at 5 % HCl solution, and 12.7 % at 12.3 and 5 % $H_2SO_4$ solutions.

A Study on the Effects of Variables in Temperature Distribution of Mass Concrete (매스 콘크리트의 온도분포에 영향을 주는 주요 변수에 관한 연구)

  • 정철헌;강석화;정한중;박칠림;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • 제6권5호
    • /
    • pp.203-212
    • /
    • 1994
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. This leads to tensile stresses that may exceed the strength of the young concrete, and cracks occur. In this present study, the heat of hydration characteristics are obtained from a study in which insulated concrete cubes were tested. Based on test results, concrete heat of hydration characteristics according to unit weight cement and flyash replacement quantity are determined, then employed in a numerical temperature analysis that consider both environmental interaction and concreting phases. The numerical results are performed by ADINA - T. The analytical results are in good agreement with experimental data.

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF