• Title/Summary/Keyword: Concepts Teaching-Problems

Search Result 152, Processing Time 0.025 seconds

Positive Effect of Non-directive College Introductory Physics Laboratory (비지시적 대학 일반 물리 실험의 긍정적 효과)

  • Kim, Eun-Sook;Hwang, Kyung-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • Experiments done in traditional physics laboratories have been criticized for giving too detailed instruction so that student could follow the experimental procedure without understanding. This type of experiment is often called "cookbook experiment." Cookbook experiment was known to be little help to understand the physics concepts and to increase student interest. To solve these problems with traditional cookbook experiment, non-directive introductory physics laboratory was designed and tried with the freshmen of Department of Physics Education of Seoul National University. Non-directive laboratory was characterized by the lack of step by step instruction for students to follow. The instruction students received consisted of the goal of experiment, a short introduction, and a list of suggested materials to be used. Student designed the experimental procedure and decided what material they wanted to use. One group submitted one lab report as a group to encourage cooperation among students. Lab report could be written in any form students wanted and no penalty point was given to poor data or inappropriate theory, etc to encourage taking risks. Penalty points were given if the students did not get involved during class hours. Student received extra point for being creative and / or working hard. Teaching assistants used Socratic dialogue in helping students to find their own way instead of explaining what they had to do. Students' interest about the non-directive experiment was studies at the of the semester. A questionnaire was made for students to answer. The questionnaire consisted of four categories, the equipment and the laboratory, the experimental procedure, the lab report, and teaching assistant. For each category, student were asked to explain the differences from other laboratory classes, features they liked and the reasons why they do, features they did not like and why they did not. At the end of the questionnaire, students were asked what hey wanted to change and what they did not. They also could put any opinion they had other than the questions asked. Student overall opinion was very positive. All the students said they liked the lack of detailed experimental procedure because it gave them the feeling of achievement, made them feel challenged and think in more diverse and creative ways. Students liked the lab report because group report forced them to discuss more and the free form lab report helped them to focus on the what they did. Student responses about the teaching assistant was also positive but not as enthusiastic as the experimental procedure or lab report. However students recognised that the role of the teaching assistant was as a guide, a supporter, or a facilitator.

  • PDF

An Analysis on the Epistemological Obstacles of Elementary Students in the Learning of Ratio and Rate (비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애 분석)

  • Park, Hee-Ok;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.159-170
    • /
    • 2012
  • Many obstacles have been found in the learning of ratio and rate. The types of epistemological obstacles concern 'terms', 'calculations' and 'symbols'. It is important to identify the epistemological obstacles that students must overcome to understand the learning of ratio and rate. In this respect, the present study attempts to figure out what types of epistemological obstacles emerge in the area of learning ratio and rate and where these obstacles are generated from and to search for the teaching implications to correct them. The research questions were to analyze this concepts as follow; A. How do elementary students show the epistemological obstacles in ratio and rate? B. What is the reason for epistemological obstacles of elementary students in the learning of ratio and rate? C. What are the teaching implications to correct epistemological obstacles of elementary students in the learning of ratio and rate? In order to analyze the epistemological obstacles of elementary students in the learning of ratio and rate, the present study was conducted in five different elementary schools in Seoul. The test was administered to 138 fifth grade students who learned ratio and rate. The test was performed three times during six weeks. In case of necessity, additional interviews were carried out for thorough examination. The final results of the study are summarized as follows. The epistemological obstacles in the learning of ratio and rate can be categorized into three types. The first type concerns 'terms'. The reason is that realistic context is not sufficient, a definition is too formal. The second type of epistemological obstacle concerns 'calculations'. This second obstacle is caused by the lack of multiplication thought in mathematical problems. As a result of this study, the following conclusions have been made. The epistemological obstacles cannot be helped. They are part of the natural learning process. It is necessary to understand the reasons and search for the teaching implications. Every teacher must try to develop the teaching method.

Analysis of the Content Relevance of the 7th National Science Curriculum in Secondary Schools (제7차 중등학교 과학과 교육과정 내용의 적정성 분석)

  • Lee, Yang-Rak;Park, Jae-Keun;Lee, Bong-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.7
    • /
    • pp.775-789
    • /
    • 2006
  • The purpose of this study was to analyze the relevance of the school science contents that have been implemented for the 7-10th grade students in Korea since 2001. To fulfill the purpose of the study, we 1) analyzed the 7th national science curriculum of Korea, California science standards, the national science curriculum of England, Japanese national science curriculum, and current Korean and Japanese science textbooks, 2) conducted a nationwide survey in order to gather opinions from students, teachers, and science specialists. The main findings of this research were as follows: First, the number of topics presented at each grade level should be reduced and similar topics and themes should be integrated for students' deeper understanding. Second, science contents were excessive compared to the allotted teaching time and to foreign countries. Thus, the excessive overlapping and repetition of science contents should be avoided among the primary, middle and high school level, and the number of science concepts and activities should be reduced to an appropriate level considering time allotment for science classes, teachers' workload, laboratory conditions, etc. Third, to cope with the decreasing students' understanding and interests in science as school level and school year goes up, the science curriculum and textbooks should be developed to allow for student to learn science concepts by solving problems confronted in their daily lives. Fourth, a differentiated curriculum such as in-depth and supplementary course should be described not in science contents, but in teaching and learning strategy.

Three Teaching-Learning Plans for Integrated Science Teaching of 'Energy' Applying Knowledge-, Social Problem-, and Individual Interest-Centered Approaches (지식내용, 사회문제, 개인흥미 중심의 통합과학교육 접근법을 적용한 '에너지' 주제의 교수.학습 방안 개발(II))

  • Lee, Mi-Hye;Son, Yeon-A;Young, Donald B.;Choi, Don-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.2
    • /
    • pp.357-384
    • /
    • 2001
  • In this paper, we described practical teaching-learning plans based on three different theoretical approaches to Integrated Science Education (ISE): a knowledge centered ISE, a social problem centered ISE, and an individual interest centered ISE. We believe that science teachers can understand integrated science education through this paper and they are able to apply simultaneously our integrated science teaching materials to their real instruction in classroom. For this we developed integrated science teaching-learning plans for the topic of energy which has a integrated feature strongly among integrated science subject contents. These modules were based upon the teaching strategies of 'Energy' following each integrated directions organized in the previous paper (Three Strategies for Integrated Science Teaching of "Energy" Applying Knowledge, Social Problem, and Individual Interest Centered Approaches) and we applied instruction models fitting each features of integrated directions to the teaching strategies of 'Energy'. There is a concrete describing on the above three integrated science teaching-learning plans as follows. 1. For the knowledge centered integration, we selected the topic, 'Journey of Energy' and we tried to integrate the knowledge of physics, chemistry, biology, and earth science applying the instruction model of 'Free Discovery Learning' which is emphasized on concepts and inquiry. 2. For the social problem centered integration, we selected the topic, 'Future of Energy' to resolve the science-related social problems and we applied the instruction model of 'Project Learning' which is emphasized on learner's cognitive process to the topic. 3. For the individual interest centered integration, we selected the topic, 'Transformation of Energy' for the integration of science and individual interest and we applied the instruction model of 'Project Learning' centering learner's interest and concern. Based upon the above direction, we developed the integrated science teaching-learning plans as following steps. First, we organized 'Integrated Teaching-Learning Contents' according to the topics. Second, based upon the above organization, we designed 'Instructional procedures' to integrate within the topics. Third, in accordance with the above 'Instructional Procedures', we created 'Instructional Coaching Plan' that can be applied in the practical world of real classrooms. These plans can be used as models for the further development of integrated science instruction for teacher preparation, textbook development, and classroom learning.

  • PDF

A Critical Approach on Environmental Education Biased to Environmental Possibilism - From Clearing up the Cause to Problem-Solving Mechanism - (환경관리주의 환경교육에 대한 비판적 고찰 - 원인규명에서 해결기제로의 전환을 위하여 -)

  • Kim, Tae-Kyung
    • Hwankyungkyoyuk
    • /
    • v.18 no.3 s.28
    • /
    • pp.59-74
    • /
    • 2005
  • We can't deny Korean EE has basically developed on the basis of Environmental Possibilism (Environmental management or Reformism) in lots of aspects. I would show three representative proofs here, the first, the philosophy of Korean EE has been mainly focused on dichotomy of human-techno centrism and eco-centrism with no considering other alternative environmentalism since 4th Formal Curriculum, 1981. The second, simultaneously, the concept of EE has not distinguished from it of Science education. (Furthermore, unfortunately some says EE has been a part of Science education, although there should be many differences on its contextual aspect.) And the third one is that the limit of possibilism which market economists have worried, has scarcely mentioned in various kinds of EE-related teaching materials. Possibilism is basically likely to be accompanied by science and economics-oriented approach, and in this aspect this dichotomy, human-techno centrism and eco-centrism, has come from perspectives of Economical development process and over-addicted belief to Science. So it is enough to say that Korean EE has basically developed with biased to Environmental possibilism, in other words, biased to preference to it. And I'll critically focus on these two axes of possibilism, Science and Economics and its dichotomy. Of course, we should accept there are so many same parts in its contents between EE and Science, but we should know its contextual differences for triangular position of environmentalism suitable to EE and also overcome science-dependant approach to EE. Although science-dependant approach to EE and dichotomy could provide some tools for clearing up the causes of environmental problem, especially always it has insisted fundamental causes of environmental problem originated in human faults and over-use of eco-source or over-economic development, but now it is old-fashioned discourse, furthermore it come to have unavoidable limits in the debates of problem-solving mechanism to environmental problems. The paramount important thing is to supply the ways or thoughtful mechanism for solving or coordinating the Environmental problems, not just searching for cause of it. But scientific approach and its dichotomy based on possibilism have continuously born cause & effect in EE-related discourse. So there are so much needs to transfer from continuous bearing of cause & effect to constructive alternatives at least in environmentalism of EE. Traditionally, dichotomical division in EE Environmentalism, human-techno centrism and eco-centrism, couldn't have Provided any answers to our real society, it just gives us only cause & effects of Environmental problems. And also we can't find the description on the limits of capitalism market approach to Environmental problems especially in Korean EE text books, other teaching materials and its teaching-learning process, although market approach economist has been proved its fault beyond its functional merits as Environmental management tools. So we should introduce other alternative Environmental philosophy instead of Possibilism such as eco-socialism insisted by Schmacher M. and Boochin etc, or marxist-environmentalism for relative and comparative views to market-thought such as commodification. In this aspect we need to accept Oriental philosophy based on moderation(中庸) as new another alternatives with the reflection that we have recognized monism as representative Oriental philosophical environmentalism. Fundamentally monism has done its role with providing relative concepts to Dichotomy Enlightenment, but we can't say it has been core concept for understanding of oriental environmentalism, and we can't distinguish monism from oriental philosophy itself, just because oriental thought itself was basically monism. So conceptual difference should be recognized between EE and Science education in teaching-learning process on the basis of life-philosophy(Philosophie des Lebens) from epistemology. For this transformation, we should introduce existentialism in Science education, in other words, only existential Science education based on phenomenology or interpretivism can be EE. And simultaneously we need some ways for overcoming of scientific foundationalism which has been tradition making science not stand on existentialism, formulating and featuring of almost all of natural things and its phenomenon from after enlightenment in western world, but it has malfunctioned in fixing conception of science just into essentialism itself. And we also introduce integrated approach to science and society for EE like STS. Those are ways for overcoming of Environmental possibilism in EE.

  • PDF

A case study on student's thoughts and expressions on various types of geometric series tasks (다양한 형태의 등비급수 과제들에 대한 학생들의 생각과 표현에 관한 사례연구)

  • Lee, Dong Gun
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.353-369
    • /
    • 2018
  • This study started with the following questions. Suppose that students do not accept various forms of geometric series tasks as the same task. Also, let's say that the approach was different for each task. Then, when they realize that they are the same task, how will students connect the different approaches? This study is a process of pro-actively confirming whether or not such a question can be made. For this purpose, three students in the second grade of high school participated in the teaching experiment. The results of this study are as follows. It also confirmed how the students think about the various types of tasks in the geometric series. For example, students have stated that the value is 1 in a series type of task. However, in the case of the 0.999... type of task, the value is expressed as less than 1. At this time, we examined only mathematical expressions of students approaching each task. The problem of reachability was not encountered because the task represented by the series symbol approaches the problem solved by procedural calculation. However, in the 0.999... type of task, a variety of expressions were observed that revealed problems with reachability. The analysis of students' expressions related to geometric series can provide important information for infinite concepts and limit conceptual research. The problems of this study may be discussed through related studies. Perhaps more advanced research may be based on the results of this study. Through these discussions, I expect that the contents of infinity in the school field will not be forced unilaterally because there is no mathematical error, but it will be an opportunity for students to think about the learning method in a natural way.

Effects of Programming Education using Visual Literacy: Focus on Arts Major (시각적 문해력을 활용한 프로그래밍 교육의 효과 : 예술계열 중심으로)

  • Su-Young Pi;Hyun-Sook Son
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • Recently, with an emphasis on software proficiency, universities are providing software education to all students regardless of their majors. However, non-majors often lack motivation for software education and perceive the unfamiliar learning content as more challenging. To address this issue, tailored software education according to the learners' characteristics is essential. Art students, for instance, with their strong visual comprehension and expressive abilities, can benefit from utilizing visual literacy to enhance the effectiveness of programming education. In this study, we propose decomposing everyday problems into flowcharts and pseudocode to construct procedural and visual images. Using the educational programming language PlayBot, we aim to analyze the effectiveness of teaching by coding to solve problems. Through this approach, students are expected to grasp programming concepts, understand problem-solving processes through computational thinking, and acquire skills to apply programming in their respective fields.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

An Analysis of the Children's Scaffolding Processes in Mathematical Problem Solving (초등수학 문제해결 활동에서 나타나는 아동 간 스캐폴딩 과정 분석)

  • Yoo, Yeun-Jin;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.75-95
    • /
    • 2009
  • The purpose of the study was to investigate the scaffolding processes of children in mathematical problem solving. 3 groups of 4th grade students participated in the study and the researchers proceeded the study for 4 months. The procedures of this research were as followings. First, when the learners solved the problems, the categories of scaffolding processes(by way of unit line coding belong in open codings, the categories were made 25 concepts and integrated 20 subcategories) were produced the 7 results: invite to the learning, set the problems, affective aids, attempt self learning, re-ordering between learners and affirmation self learning. Second, the processes of scaffolding in mathematic problem solving resulted in condition, the present condition, action/interaction and the outcomes. Third, the cognitive and affective aids that discovered in the scaffolding processes were considered the main categories of learner's scaffolding processes in solving the mathematic problems. In conclusion, first, the learners' scaffolding processes, based on Vygotsky's "the zone of proximal development" in selection and presentation of mathematic problems, are very diverse. Peers' affective aids are very important in solving the problems. Second, learners in the scaffolding processes exchange the cognitive and affective aids with each other with joy and earnestness, and the aids can give assistance to all the participants. Third, in the results of observation and analysis in learners' scaffolding processes, it is meaningful to know how they think. Finally, the learners' scaffolding processes are a little unsystematic and illogical compared to those of adults, but those of scaffolders are so similar to those of learners' cognitive and affective systems that they can provide teachers with many merits in understanding and teaching learners.

  • PDF

An Analysis on the Concept and Measuring Activities of the Height of Figures in Elementary School Mathematics Textbooks2 (초등학교 수학 교과서에 서술된 높이 개념과 측정 활동 분석)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 2016
  • The concept and measuring activities of the height of figures are essential to find the areas or volumes of the corresponding figures. For plane figures, the height of a triangle is defined to be the line segment from a vertex that is perpendicular to the opposite side of the triangle, whereas the height of a parallelogram(trapezoid) is defined to be the distance between two parallel sides. For the solid figures, the height of a prism is defined to be the distance of two parallel bases, whereas the height of a pyramid is defined to be the perpendicular distance from the apex to the base. In addition, the height of a cone is defined to be the length of the line segment from the apex that is perpendicular to the base and the height of a cylinder is defined to be the length of the line segment that is perpendicular to two parallel bases. In this study, we discuss some pedagogical problems on the concepts and measuring activities of the height of figures to provide alternative activities and suggest their educational implications from a teaching and learning point of view.