• Title/Summary/Keyword: Concentration profiles

Search Result 892, Processing Time 0.035 seconds

Determination of Physicochemical Properties and Pharmacokinetic Profiles of Soybean Extracts

  • Jung, Hyun-Chan;You, Sung-Kyun;Kwon, Sun-Kyu;Hwang, Ji-Sook;Cho, Cheong-Weon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.347-351
    • /
    • 2010
  • Isoflavones have received much attention because of their health-related and clinical benefits such as estrogenic and anti-oxidative activities as well as triggering of natural killer cell activity. However, there are few publications reporting the pharmacokinetic profiles together with physicochemical properties of main isoflavones. Therefore, the pharmacokinetic parameters of main aglycones, daidzein, glycitein and genistein after oral administration of soybean extracts were investigated and the physicochemical properties of soybean extracts were characterized. It was observed that angle of repose was $46^{\circ}$ and tap density, bulk density and porosity were 10.12, 4.3 and $0.86\;g/cm^3$ and the mean $AUC_{last}$ of daidzein, glycitein and genistein was $11.376\;{\mu}g{\cdot}h/mL$, $3.045\;{\mu}g{\cdot}h/mL$ and $0.825\;{\mu}g{\cdot}h/mL$, respectively. Cell viability was 60% at a concentration of 10 mg/mL. Taken together, it was suggested that isoflavones were contained in the soybean products and had an antioxidant activity and this study would be the basis to control the quality of soybean products and study of the bioequivalence between soybean products in future.

Analysis of Current Characteristics Determined by Doping Profiles in 3-Dimensional Devices (3차원 구조 소자에서의 doping profile에 따른 전류 특성 분석)

  • Cho, Seong-Jae;Yun, Jang-Gn;Park, Il-Han;Lee, Jung-Hoon;Kim, Doo-Hyun;Lee, Gil-Seong;Lee, Jong-Duk;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.475-476
    • /
    • 2006
  • Recently, the demand for high density MOSFET arrays are increasing. In implementing 3-D devices to this end, it is inevitable to ion-implant vertically in order to avoid screening effects caused by high silicon fins. In this study, the dependency of drain current characteristics on doping profiles is investigated by 3-D numerical analysis. The position of concentration peak (PCP) and the doping gradient are varied to look into the effects on primary current characteristics. Through these analyses, criteria of ion-implantation for 3-D devices are established.

  • PDF

Glass optical waveguides made by electric-field-assisted $Cs^+-Na^+$ ion exchange (전기장에 의한 $Cs^+-Na^+$ 이온교환으로 제작된 유리 광도파로)

  • 김영철;원영희;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.86-91
    • /
    • 1998
  • Multimode planar waveguides have been fabricated by an electric-field assisted ion exchange in soda-lime glass substrates. Measurements of the mode indices have been made and the index profiles modeled on modified Fermi function are explained by a comparative analysis with the concentration profiles obtained using an electron probe X-ray micro analyzer. The analytical measurements showed that no more than 95% of sodium ions were replaced by the cesium ions. We established formulas for guide depth, mobility, and refractive index change, given the applied electric field, the diffusion temperature, and the time. We have verified the linear relations in the formulas not only between guide and root of diffusion time but also between guide depth and the applied electric filed experimentally.

  • PDF

Clinical Pharmacokinetic Profiles of Hanmi SMEDDS Silymarin Soft Capsule Preparation (한미 SMEDDS 실리마린 연질캅셀 제제의 임상약동학적 특성)

  • 박민수;유내춘;김경환
    • Biomolecules & Therapeutics
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2000
  • Silibinin(silybin) is the active component of silymarin from Silybum marianum and has hepato-protective effect. It is water-insoluble and has low bioavailability. To improve its bioavailability, self-micro-emulsifying drug delivery system (SMEDDS) has been developed by Hanmi Pharmaceutical Company (Silyma $n^{R}$ 140 soft capsule). In this study, the pharmacokinetic profiles of Silyma $n^{R}$ were examined and compared it with a reference preparation, L Caps140 of B Pharmaceutical Company. This study was approved by Yonsei University Severance Hospital IRB(approval No. CR0004) and followed the bioequivalence test guideline of Korean FDA. Eighteen healthy adult volunteers were allocated based on 2$\times$2 Latin square cross-over design. They were given 2 capsules (each contains silymarin 140 mg (60 mg as silibinin)) of either drug at each period and crossed over after a week of drug-free washout period. Blood concentration of silibinin was measured by HPLC. The $C_{max}$ and AUC of the Silyma $n^{R}$ were 1542.0 $\pm$ 402.7 ng/ml and 3323.3 $\pm$ 824.7 ng.h/ml, respectively, and were significantly higher than those of reference preparation. The Tmax was 0.8 $\pm$ 0.3 h and significantly shorter than reference preparation. The $K_{e}$ and $T_{1}$2/ of both drugs were comparable. Percent differences in means against reference preparation were +88.3% for AUC, +222.6% for $C_{max}$, and -61.1% for $T_{max}$./.>././.>./.

  • PDF

Application of metabolic profiling for biomarker discovery

  • Hwang, Geum-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.19-27
    • /
    • 2007
  • An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.

  • PDF

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Global Strain Rate on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 변형률이 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.42-47
    • /
    • 2004
  • The axisymmetric methane-air counterflow flame in microgravity was simulated to investigate effects of the global strain rate on the flame structure. The flame shapes and profiles of temperature and the axial velocity for the mole fraction of methane in the methane-nitrogen fuel stream, Xm= 20, 50, $80\%$, and the global strain rate, ag= 20, 60, 90 $s^{-1}$ each mole fraction were compared. The profiles of the temperature and axial velocity of the axisymmetric simulations were in good agreement with those of OPPDIF, an one-dimensional flamelet code. It was confirmed that the flame is stretched more and the flame radius increases and the flame thickness decreases as the global strain rate increases.

  • PDF

Effect of supplementation with brewer's yeast hydrolysate on growth performance, nutrients digestibility, blood profiles and meat quality in growing to finishing pigs

  • Zhang, Jian Ying;Park, Jae Won;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1565-1572
    • /
    • 2019
  • Objective: This study was aimed to investigate the effects of brewer's yeast hydrolysate (YH) on growth performance, nutrients digestibility, blood profiles and meat quality of growing pigs. Methods: A total of 200 growing pigs ($[Landrace{\times}Yorkshire]{\times}Duroc$) (initial body weight, $25.31{\pm}1.29kg$) were allotted to 5 treatments as follow: CON, basic diet; and YH treatment, CON+0.05%, 0.1%, 0.5%, and 1.0% of YH, respectively. Results: On wk 11, 16 and overall phase, pigs fed YH diet showed a linear improvement in average daily body gain and gain/feed (p<0.05). The pigs that received YH linearly increased the digestibility of dry matter, nitrogen, and energy on wk 11 and 16. The concentration of serum urea nitrogen was linearly increased in YH treatments on wk 16. However, the carcass weight, back fat and lean muscle percentage of pigs receiving YH had no significant change. Besides, no difference was observed in creatinine and total protein in the blood among treatments. Conclusion: The pigs fed a graded YH diet had improved growth performance and nutrient digestibility, meanwhile, the YH increased the serum urea nitrogen in the growing pigs.

Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material (유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향)

  • Park, Sung Yong;Lim, Eun Teak;Cha, Moon Hwan;Lee, Ji Soo;Chung, Chee Won
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.162-171
    • /
    • 2021
  • Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents

  • Lee, Sujin;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.31-43
    • /
    • 2017
  • Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.

Alteration of Biochemical Profiles after High-Dose Intravenous Immunoglobulin Administration in Kawasaki Disease (가와사끼병에서 고용량 정맥용 면역글로불린 투여 후 생화학 지표들의 변화)

  • Lee, Ji-Won;Lee, Kyung-Yil
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.817-820
    • /
    • 2003
  • Purpose : Intravenous immunoglobulin(IVIG) has been used as an immunomodulatory treatment for several immune-mediated diseases. The early effect of high-dose IVIG on biochemical profiles including lipids and proteins was evaluated in patients with Kawasaki disease(KD). Methods : Twelve children with KD(nine boys) were treated with IVIG of 2 g/kg over 12 hours. Serial sera were collected from the patients four times : before IVIG treatment and two hours, 24 hours and seven days after IVIG treatment. The samples were frozen at $-20^{\circ}C$ before biochemical analysis. Results : A significant decrease in albumin concentration was found two hours h and 24 hours after IVIG treatment, but this recovered to the pretreatment level after seven days. Total cholesterol and triglyceride increased slightly after seven day. A significant decrease in HDL-cholesterol and C-reactive protein was seen two hours and 24 hours after IVIG treatment. Conclusion : High-dose IVIG affects immediate changes in protein profiles and HDL-cholesterol in KD. Changes in HDL-cholesterol induced by IVIG may be the result of changes in systemic protein metabolism.