Browse > Article
http://dx.doi.org/10.6564/JKMRS.2017.21.1.031

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents  

Lee, Sujin (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Kang, Sunmi (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Park, Sunghyouk (Natural Product Research Institute, College of Pharmacy, Seoul National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.21, no.1, 2017 , pp. 31-43 More about this Journal
Abstract
Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.
Keywords
Lung cancer cell; Chemotherapy; Cytotoxic agents; Metabolic profile; NMR spectroscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Hammel, O. Hentic, C. Neuzillet, S. Faivre, E. Raymond, and P. Ruszniewski, Target Oncol. 7, 169 (2012)   DOI
2 I. F. Duarte, A. F. Ladeirinha, I. Lamego, A. M. Gil, L. Carvalho, I. M. Carreira, and J. B. Melo, Mol. pharmaceutics 10, 4242 (2013)   DOI
3 M. S. Ham, J. K. Lee, and K. C. Kim, Mol. Clin. Oncol. 1, 373 (2013)   DOI
4 S. Lv, Z. Tang, M. Li, J. Lin, W. Song, H. Liu, Y. Huang, Y. Zhang, and X. Chen, Biomaterials 35, 6118 (2014)   DOI
5 Z. H. Siddik, Oncogene 22, 7265 (2003)   DOI
6 A. Schulze, and A. L. Harris, Nature 491, 364 (2012)   DOI
7 R. Possemato, K. M. Marks, Y. D. Shaul, M. E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H. K. Woo, H. G. Jang, A. K. Jha, W. W. Chen, F. G. Barrett, N. Stransky, Z. Y. Tsun, G. S. Cowley, J. Barretina, N. Y. Kalaany, P. P. Hsu, K. Ottina, A. M. Chan, B. Yuan, L. A. Garraway, D. E. Root, M. Mino-Kenudson, E. F. Brachtel, E. M. Driggers, and D. M. Sabatini, Nature 476, 346 (2011)   DOI
8 C. M. Metallo, P. A. Gameiro, E. L. Bell, K. R. Mattaini, J. Yang, K. Hiller, C. M. Jewell, Z. R. Johnson, D. J. Irvine, L. Guarente, J. K. Kelleher, M. G. Vander Heiden, O. Iliopoulos, and G. Stephanopoulos, Nature 481, 380 (2012)   DOI
9 A. S. Lee, Nature reviews. Cancer 14, 263 (2014)   DOI
10 M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A. L. Souza, R. Kafri, M. W. Kirschner, C. B. Clish, and V. K. Mootha, Science 336, 1040 (2012)   DOI
11 M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, Science 324, 1029 (2009)   DOI
12 S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, Biochem. Biophys. Res. Commun. 448, 461 (2014)   DOI
13 L. M. Phan, S. C. Yeung, and M. H. Lee, Cancer Biol. Med. 11, 1 (2014)
14 R. J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S. Wehrli, and C. B. Thompson, Proc. Natl. Acad. Sci. U. S. A. 104, 19345 (2007)   DOI
15 D. R. Wise, R. J. DeBerardinis, A. Mancuso, N. Sayed, X. Y. Zhang, H. K. Pfeiffer, I. Nissim, E. Daikhin, M. Yudkoff, S. B. McMahon, and C. B. Thompson, Proc. Natl. Acad. Sci. U. S. A. 105, 18782 (2008)   DOI
16 D. I. Benjamin, A. Cozzo, X. Ji, L. S. Roberts, S. M. Louie, M. M. Mulvihill, K. Luo, and D. K. Nomura, Proc. Natl. Acad. Sci. U. S. A. 110, 14912 (2013)   DOI
17 K. Akira, H. Hichiya, M. Morita, A. Shimizu, and H. Mitome, J. Pharm. Biomed. Anal. 85, 155 (2013)   DOI
18 C. Zhu, W. Hu, H. Wu, and X. Hu, Sci. Rep. 4, 5029 (2014)
19 P. Tripathi, B. S. Somashekar, M. Ponnusamy, A. Gursky, S. Dailey, P. Kunju, C. T. Lee, A. M. Chinnaiyan, T. M. Rajendiran, and A. Ramamoorthy, J. Proteome Res. 12, 3519 (2013)   DOI
20 A. Irfan, M. Cauchi, W. Edmands, N. J. Gooderham, J. Njuguna, and H. Zhu, Toxicol Sci. 138, 354 (2014)   DOI
21 D. Yoon, S. Ma, H. Choi, H. Noh, Y. Ok, and S. Kim, J. Kor. Magn. Reson. Soc. 20, 121 (2016)   DOI
22 S. Lee, J. Kor. Magn. Reson. Soc. 20, 87 (2016)   DOI
23 J. Kim, S. K. Keay, J. D. Dimitrakov, and M. R. Freeman, FEBS Lett. 581, 3795 (2007)   DOI
24 B. Chaneton, P. Hillmann, L. Zheng, A. C. Martin, O. D. Maddocks, A. Chokkathukalam, J. E. Coyle, A. Jankevics, F. P. Holding, K. H. Vousden, C. Frezza, M. O'Reilly, and E. Gottlieb, Nature 491, 458 (2012)   DOI
25 J. Kang, S. Lee, S. Kang, H. N. Kwon, J. H. Park, S. W. Kwon, and S. Park, Arch. Pharmacal Res. 31, 330 (2008)   DOI
26 H. Wen, S. Kang, Y. Song, Y. Song, S. H. Sung, and S. Park, Phytochem. Anal. 21, 73 (2010)   DOI
27 P. Langfelder, and S. Horvath, BMC Bioinf. 9, 559 (2008)   DOI
28 J. Wang, L. Chen, X. Tian, L. Gao, X. Niu, M. Shi, and W. Zhang, J. Proteome Res. 12, 5302 (2013)   DOI
29 S. E. Elf, and J. Chen, Cancer 120, 774 (2014)   DOI
30 A. L. Simons, I. M. Ahmad, D. M. Mattson, K. J. Dornfeld, and D. R. Spitz, Cancer Res. 67, 3364 (2007)   DOI
31 Y. Zhao, E. B. Butler, and M. Tan, Cell Death Dis. 4, e532 (2013)   DOI
32 S. Liu, W. Wang, X. Zhou, R. Gu, and Z. Ding, Environ. Toxicol. Pharmacol. 37, 150 (2014)   DOI
33 A. Lodi, and S. M. Ronen, PloS one 6, e26155 (2011)   DOI
34 M. W. Dewhirst, Y. Cao, C. Y. Li, and B. Moeller, Radiother. Oncol. 83, 249 (2007)   DOI
35 H. J. Jang, and S. J. Kim, J. Recept. Signal Transduction Res. 33, 387 (2013)   DOI
36 C. Gorrini, I. S. Harris, and T. W. Mak, Nat. Rev. Drug Discovery 12, 931 (2013)   DOI
37 D. T. Vincent, Y. F. Ibrahim, M. G. Espey, and Y. J. Suzuki, Cancer Chemother. Pharmacol. 72, 1157 (2013)   DOI
38 S. Crawford, Ther. Adv. Med. Oncol. 6, 52 (2014)   DOI
39 K. Gaurav, R. K. Goel, M. Shukla, and M. Pandey, Indian J. Med. Paediatr. Oncol. 33, 13 (2012)   DOI
40 M. B. Braga-Neto, C. A. Warren, R. B. Oria, M. S. Monteiro, A. A. Maciel, G. A. Brito, A. A. Lima, and R. L. Guerrant, Dig. Dis. Sci. 53, 2687 (2008)   DOI
41 C. B. Newgard, Cell Metab. 15, 606 (2012)   DOI
42 J. H. Cha, S. H. Bae, H. L. Kim, N. R. Park, E. S. Choi, E. S. Jung, J. Y. Choi, and S. K. Yoon, PloS one 8, e77899 (2013)   DOI
43 J. Fan, J. Ye, J. J. Kamphorst, T. Shlomi, C. B. Thompson, and J. D. Rabinowitz, Nature 510, 298 (2014)   DOI
44 J. H. Lim, C. Luo, F. Vazquez, and P. Puigserver, Cancer Res. 74, 3535 (2014)   DOI