Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.3.162

Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material  

Park, Sung Yong (Department of Chemical Engineering, Inha University)
Lim, Eun Teak (Department of Chemical Engineering, Inha University)
Cha, Moon Hwan (Department of Chemical Engineering, Inha University)
Lee, Ji Soo (Department of Chemical Engineering, Inha University)
Chung, Chee Won (Department of Chemical Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.31, no.3, 2021 , pp. 162-171 More about this Journal
Abstract
Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.
Keywords
copper; inductively coupled plasma reactive ion etching; ethylenediamine; hexafluoroisopropanol; etch profile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Rosenberg, D. C. Edelstein, C.-K. Hu and K. P. Rodbell, Annu. Rev. Mater. Sci., 30, 229 (2000).   DOI
2 S. P. Murarka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995).   DOI
3 F. Chen and D. Gardner, IEEE Electron Device Lett., 19, 508 (1998).   DOI
4 S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 22, 240 (2004).   DOI
5 W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005).   DOI
6 M. Traving, G. Schindler and M. Engelhardt, J. Appl. Phys., 100, 094325 (2006).   DOI
7 S. H. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001).   DOI
8 S. H. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004).   DOI
9 S. K. Lee, S. S. Chun, C. Y. Hwang and W. J. Lee, Jpn. J. Appl. Phys., 36, 50 (1997).   DOI
10 F. Wu, G. Levitin and D. W. Hess, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 29, 011013 (2011).
11 S. W. Kang, H. U. Kim and S. W. Rhee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 17, 154 (1999).   DOI
12 E. T. Lim, J. S. Ryu and C. W. Chung, Thin Solid Films, 665, 51 (2018).   DOI
13 E. T. Lim, J. S. Ryu, J. S. Choi and C. W. Chung, Vacuum, 167, 145 (2019).   DOI
14 J. S. Ryu, E. T. Lim, J. S. Choi and C. W. Chung, Thin Solid Films, 672, 55 (2019).   DOI
15 M. H. Cha, E. T. Lim, S. Y. Park, J. S. Lee and C. W. Chung, Vacuum, 181, 109421 (2020).   DOI
16 K. J. Clay, S. P. Speakman, G. A. J. Amaratunga and S. R. P. Silva, J. Appl. Phys., 79, 7227 (1996).   DOI
17 S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Rulke, S. E. Schulz and T. Gessner, Microelectron. Eng., 87, 337 (2010).   DOI
18 S. Poulston, P. M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal., 24, 811 (1996).   DOI
19 A. Cano, Y. Avila, M. Avila and E. Reguera, J. Solid State Chem., 276, 339 (2019).   DOI
20 E. Cano, J. M. Bastidas, J. L. Polo and N. Mora, J. Electrochem. Soc., 148, B431 (2001).   DOI
21 H. W. Kim and N. E. Lee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 28, 715 (2010).   DOI
22 G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers : The Scienta ESCA300 Database, p.182, John Wiley & Sons, New York (1992).
23 M. Furukawa, H. Fujisawa, S. Katano, H. Ogasawara, Y. Kim, T. Komeda, A. Nilsson and M. Kawai, Surf. Sci., 532, 261 (2003).   DOI
24 G. C. Allen, F. Sorbello, C. Altavilla, A. Castorina and E. Ciliberto, Thin Solid Films, 483, 306 (2005).   DOI