• Title/Summary/Keyword: Concentrating Solar System

Search Result 61, Processing Time 0.024 seconds

A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea (국내 태양광자원의 성분 및 파장별 분석에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

High-Temperature Solar Thermal Technologies: 2008 SolarPACES Symposium Review (고온태양열 활용기술 최근동향: 2008 SolarPACES Symposium Review)

  • Kim, Jin-Soo;Kang, Yong-Heack;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.174-177
    • /
    • 2008
  • The proceeding of the $14^{th}$ biennial concentrating solar power SolarPACES symposium was closely reviewed and summarized to have an overview on up-to-date concentrated solar thermal technologies. A number of studies covering parabolic trough concentrating system, central receiver technology, solar fuels, dish and others were presented in the symposium which was held in Las Vegas, USA, from 4 to 7, 2008. Based on this overview a brief summary of technology trend and prospects were added in the paper.

  • PDF

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF

A Study on Concentrating Photovoltaic Module with Plate Structure (평판 구조의 집광형 태양광 모듈 구조에 관한 연구)

  • Park, Seung-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

A Study on Concentrating Photovoltaic System by GPS Solar Tracker (GPS 태양추적장치를 이용한 집광형 태양광발전시스템에 관한 연구)

  • Jeong, Yong-Hwan;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • The energy of CPV system is different as the altitude and azimuth of solar. In order to The maximum of solar energy density, the tracking system which does there to make be the module and the solar will be able to maintain a normal line is necessary. This paper proposed for GPS solar tracker of stand-alone 60[W] concentrating photovoltaic system. The position algorithm of solar tracker is through the coordinates transformation calculating the altitude and azimuth of the solar.

Experimental Investigation of Concentrating Photovoltaic System Applying Commercial Multi-array Lens for Space Applications (상용 배열형 렌즈를 적용한 집광형 태양전력시스템의 우주 적용 가능성 실험적 검토)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Yong-Geun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.622-627
    • /
    • 2014
  • A pico-class satellite has limitation to generate power from the solar cells due to its limited accommodation area to install the solar cells. The variation of incidence angle between solar panels and sunlight induced by the revolution and rotation of the satellite is one of the key parameters to determine the power generation. In this study, we proposed a concentrating photovoltaic system for pico-class satellite applications to enhance power generation when the ${\beta}$ angle between the sunlight and the solar panel is zero by effectively concentrating solar energy on solar panels. The feasibility of the conceptual idea has been demonstrated by power measurement test using solar simulator and commercial multi-array lens system.

Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector (다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析))

  • Song, Hyun-Kap
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

A Study on the Analysis of Solar Radiation Components (일사량의 성분 분석에 관한 연구)

  • Jo, D.K.;Chun, I.S.;Lee, T.K.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • Informations of the solar radiation component are essential for modeling various solar energy systems. These Informations are particularly used for middle and high temperature applications, those need concentrating direct normal insolation. In order to estimate the performance of concentrating systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since August, 1996. KIER's component data will be extensively used by concentrating system users or designers as well as by research institutes.

  • PDF

Activities of IEA SolarPACES & Task Programs (IEA SolarPACES 및 Task 활동)

  • Kang, Yong-Heack;Kim, Jong-Kyu;Lee, Hyun-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.246-249
    • /
    • 2011
  • SolarPACES is an international cooperative network bringing together teams of national exports from around the world to focus on the development and marketing of concentrating solar power systems (also known as solar thermal power systems). It is one of a number of collaborative programs, called Implementing Agreements, managed under the umbrella of the International Energy Agency to help find solutions to worldwide energy problems. Technology development is at the core of the work of SolarPACES. Member countries work together on activities aimed at solving the wide range of technical problems associated with commercialization of concentrating solar technology, including large-scale system tests and the development of advanced technologies, components, instrumentation, and systems analysis techniques. In addition to technology development, market development and building of awareness of the potential of concentrating solar technologies are key elements of the SolarPACES program The Implementing Agreement specifies broad "Tasks," or thematic areas of work SolarPACES currently has three ongoing tasks, focusing on concentrating solar electric power systems (Task I), solar chemistry research (Task II), and solar technology and applications (Task III). An Operating Agent, nominated by the ExCo, is responsible for overseeing the work of each task Each task maintains a detailed program of work that defines all task activities, including their objectives, participants, plans, and budgets. In addition to technical reports of the activities and their participants, accomplishments and progress are summarized in the SolarPACES annual report. Many SolarPACES activities involve close cooperation among member countries (either through sharing of task activities or, occasionally, cost-sharing), although some cooperation is limited to sharing of information and results with other participants. In this paper, structure, works, and members of SolarPACES and Korean activies in the SolarPACES are introduced.

  • PDF

Activities of IEA SolarPACES & Task Programs (IEA SolarPACES 및 Task 활동)

  • Kang, Yong-Heack;Kim, Jong-Kyu;Lee, Hyun-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.320-323
    • /
    • 2011
  • SolarPACES is an international cooperative network bringing together teams of national experts from around the world to focus on the development and marketing of concentrating solar power systems (also known as solar thermal power systems). It is one of a number of collaborative programs, called Implementing Agreements, managed under the umbrella of the International Energy Agency to help find solutions to worldwide energy problems. Technology development is at the core of the work of Solar PACES. Member countries work together on activities aimed at solving the wide range of technical problems associated with commercialization of concentrating solar technology, including large-scale system tests and the development of advanced technologies, components, instrumentation, and systems analysis techniques. In addition to technology development, market development and building of awareness of the potential of concentrating solar technologies are key elements of the Solar PACES program. The Implementing Agreement specifies broad "Tasks," or thematic areas of work. SolarPACES currently has three ongoing tasks, focusing on concentrating solar electric power systems (Task I), solar chemistry research (Task II), and solar technology and applications (Task III). An Operating Agent, nominated by the ExCo, is responsible for overseeing the work of each task. Each task maintains a detailed program of work that defines all task activities, including their objectives, participants, plans, and budgets. In addition to technical reports of the activities and their participants, accomplishments and progress are summarized in the SolarPACES annual report. Many SolarPACES activities involve close cooperation among member countries (either through sharing of task activities or, occasionally, cost-sharing), although some cooperation is limited to sharing of information and results with other participants. In this paper, structure, works, and members of SolarPACES and Korean activies in the SolarPACES are introduced.

  • PDF