In this study, we develop a B & B type algorithm for the concave minimization problem with 0-1 knapsack constraint. Our algorithm reformulates the original problem into the singly linearly constrained concave minimization problem by relaxing 0-1 integer constraint in order to get a lower bound. But this relaxed problem is the concave minimization problem known as NP-hard. Thus the linear function that underestimates the concave objective function over the given domain set is introduced. The introduction of this function bears the following important meanings. Firstly, we can efficiently calculate the lower bound of the optimal object value using the conventional convex optimization methods. Secondly, the above linear function like the concave objective function generates the vertices of the relaxed solution set of the subproblem, which is used to update the upper bound. The fact that the linear underestimating function is uniquely determined over a given simplex enables us to fix underestimating function by considering the simplex containing the relaxed solution set. The initial containing simplex that is the intersection of the linear constraint and the nonnegative orthant is sequentially partitioned into the subsimplices which are related to subproblems.
본 논문에서는 한 개의 선형 제약식 하에서 의사결정변수가 상한 값을 갖는 오목 함수 최소화 문제를 다룬다. 제시된 분지 한계 해법은 단체를 분할 단위로 사용하였다. 오목함수를 가장 단단하게 하한추정하는 볼록덮개함수를 단체 상에서 유일하게 구할 수 있기 때문이다. 분지가 일어날 때마다 후보 단체로부터 1 차원 낮은 2 개의 하위 단체들이 생성된다. 이 때 후보 단체에 포함되어 있던 가능해 집합은 각각의 하위 단체로 분할된다. 한계 연산 절차는 선형인 볼록 덮개 함수를 목적 함수로 하는 선형계획법을 부문제로 정의하고 해를 구한다. 부문제의 최적 목적함수 값으로부터 최적 오목목적함수의 하한과 상한을 갱신하고, 원문제의 최적해를 포함하지 않는 단체들을 고려 대상에서 제외시킨다. 본 해법의 최대 장점은 하위 단체로 분할될수록 부문제들의 크기가 점점 작아진다는데 있다. 이것은 한계 연산의 계산량이 줄어든다는 것을 의미한다. 본 연구의 결과는 배낭 제약식 유형의 제약식 하에서의 오목 함수 최소화 문제의 해법을 개발하는데 응용될 수 있을 것이다.
Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.
In the zigzag milling operation, an important issue is to design a machining strategy which minimizes the cutting time. An important variable for minimization of cutting time is the tool path length. The tool path is divided into cutting path and non-cutting path. Cutting path can be subdivided into tool path segment and step-over, and non-cutting path can be regarded as the tool retraction. We propose a new method to determine the cutting direction which minimizes the length of tool path in a convex or concave polygonal shape including islands. For the minimization of tool path length, we consider two factors such as step-over and tool retraction. Step-over is defined as the tool path length which is parallel to the boundary edges for machining area and the tool retraction is a non-cutting path for machining any remaining regions. In the determination of cutting direction, we propose a mathematical model and an algorithm which minimizes tool retraction length in complex shapes. With the proposed methods, we can generate a tool path for the minimization of cutting time in a convex or concave polygonal shapes including islands.
The aim of this paper is to develop the B & B type algorithms for globally minimizing concave function under 0-1 knapsack constraint. The linear convex envelope underestimating the concave object function is introduced for the bounding operations which locate the vertices of the solution set. And the simplex containing the solution set is sequentially partitioned into the subsimplices over which the convex envelopes are calculated in the candidate problems. The adoption of cutting plane method enhances the efficiency of the algorithm. These mean valid inequalities with respect to the integer solution which eliminate the nonintegral points before the bounding operation. The implementations are effectively concretized in connection with the branching stategys.
본 연구에서는 다중 선택 배낭 모형의 최적해를 찾는 해법을 제시하고자 한다. 다중 선택은 동일한 집단에 소속된 구성원들이 동시에 선택되거나 동시에 배제되는 상황에서 관찰된다. 각 집단 간 관련성의 측정치인 오목 함수가 의사결정기준으로 설정되었다. 다중 선택은 비선형 제약식으로 모형화 되는데 일반 배낭 제약식으로 변환될 수 있다. 따라서 최적 해법 개발을 위해 오목함수 최소화 문제와 배낭 문제의 일반적인 해법들에서 채택하고 있는 분지 한계 접근법을 이용하였다. 단체상에서 오목함수를 가장 근접하게 하한추정하는 함수가 1차식이라는 사실이 한계 전략의 이론적 토대가 된다. 또한 하위 단계에서도 1차식 목적함수가 유일하게 결정되도록, 후보 단체를 두 개의 초평면에 투사시킴으로써 1차원 낮은 두 개의 하위 단체로 분할하는 방법이 분지 전략의 핵심이다. 앞으로 본 연구의 결과는 다양한 형태의 배낭 제약식 하에서의 오목 함수 최소화 문제의 해법을 개발하는데 응용될 수 있을 것이다.
Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.
We consider an insured who wishes to determine his optimal reporting strategy over a given planning horizon, when he has option of reporting of not reporting his at-fault accidents. Assuming that the premium in future period is continually adjusted by the insured's loss experience, the insured would not report every loss incurred. Rather, considering the benefits and costs of each decision, the insured may want to seek a way of optimizing his interests over the planning horizon. The situation is modeled as a dynamic programming problem. We consider an insured's discounted expected cost minimization problem, where the premium increase in future period is affected by the size of the current claim. More specifically, we examine two cases ; (1) the premium increase in the next is a linear function (a constant fraction) of the current claim size; (2) the premium increase in the next period is a concave function of the current claim size. In each case, we derive the insured's optimal reporting strategy.
To realize the mass customization entails the optimized supply chain design for efficiently producing and delivering the various products. In this study, we considered the problem obtaining the optimized production policy under the situation wherein the multiple products are apportioned into multiple parallel production facilities. More specifically, the production set-up costs incurs according to whether the production facilities are utilized or not. The facility-dependent set-up costs increase the problem complexity in solving the production apportioning problem for multiple products. This problem can be formulated as concave minimization problem, which is known as NP-hard problem. In this paper, a heuristic algorithm is proposed to solve two conjoint problems : one is to select the cost-effective facilities from alternative multiple production facilities and the other is to apportion the production lot to those selected facilities.
An effective methodology is .reported for determining the optimal capacity (lot-size) of batch processing and storage networks which include material recycle or reprocessing streams. We assume that any given storage unit can store one material type which can be purchased from suppliers, be internally produced, internally consumed and/or sold to customers. We further assume that a storage unit is connected to all processing stages that use or produce the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. The objective for optimization is to minimize the total cost composed of raw material procurement, setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory hold-up. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems. The first yields analytical solutions for determining batch sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks. For the special case in which the number of storage is equal to the number of process stages and raw materials storage units, a complete analytical solution for average flow rates can be derived. The analytical solution for the multistage, strictly sequential batch-storage network case can also be obtained via this approach. The principal contribution of this study is thus the generalization and the extension to non-sequential networks with recycle streams. An illustrative example is presented to demonstrate the results obtainable using this approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.