• Title/Summary/Keyword: Computing System

Search Result 5,921, Processing Time 0.028 seconds

A Study on Creation of Secure Storage Area and Access Control to Protect Data from Unspecified Threats (불특정 위협으로부터 데이터를 보호하기 위한 보안 저장 영역의 생성 및 접근 제어에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.897-903
    • /
    • 2021
  • Purpose: Recently, ransomware damage that encrypts victim's data through hacking and demands money in exchange for releasing it is increasing domestically and internationally. Accordingly, research and development on various response technologies and solutions are in progress. Method: A secure storage area and a general storage area were created in the same virtual environment, and the sample data was saved by registering the access process. In order to check whether the stored sample data is infringed, the ransomware sample was executed and the hash function of the sample data was checked to see if it was infringed. The access control performance checked whether the sample data was accessed through the same name and storage location as the registered access process. Result: As a result of the experiment, the sample data in the secure storage area maintained data integrity from ransomware and unauthorized processes. Conclusion: Through this study, the creation of a secure storage area and the whitelist-based access control method are evaluated as suitable as a method to protect important data, and it is possible to provide a more secure computing environment through future technology scalability and convergence with existing solutions.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

An Accelerated IK Solver for Deformation of 3D Models with Triangular Meshes (삼각형 메쉬로 이루어진 3D 모델의 변형을 위한 IK 계산 가속화)

  • Park, Hyunah;Kang, Daeun;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of our research is to efficiently deform a 3D models which is composed of a triangular mesh and a skeleton. We designed a novel inverse kinematics (IK) solver that calculates the updated positions of mesh vertices with fewer computing operations. Through our user interface, one or more markers are selected on the surface of the model and their target positions are set, then the system updates the positions of surface vertices to construct a deformed model. The IK solving process for updating vertex positions includes many computations for obtaining transformations of the markers, their affecting joints, and their parent joints. Many of these computations are often redundant. We precompute those redundant terms in advance so that the 3-nested loop computation structure was improved to a 2-nested loop structure, and thus the computation time for a deformation is greatly reduced. This novel IK solver can be adopted for efficient performance in various research fields, such as handling 3D models implemented by LBS method, or object tracking without any markers.

Cyber Threats Analysis of AI Voice Recognition-based Services with Automatic Speaker Verification (화자식별 기반의 AI 음성인식 서비스에 대한 사이버 위협 분석)

  • Hong, Chunho;Cho, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Automatic Speech Recognition(ASR) is a technology that analyzes human speech sound into speech signals and then automatically converts them into character strings that can be understandable by human. Speech recognition technology has evolved from the basic level of recognizing a single word to the advanced level of recognizing sentences consisting of multiple words. In real-time voice conversation, the high recognition rate improves the convenience of natural information delivery and expands the scope of voice-based applications. On the other hand, with the active application of speech recognition technology, concerns about related cyber attacks and threats are also increasing. According to the existing studies, researches on the technology development itself, such as the design of the Automatic Speaker Verification(ASV) technique and improvement of accuracy, are being actively conducted. However, there are not many analysis studies of attacks and threats in depth and variety. In this study, we propose a cyber attack model that bypasses voice authentication by simply manipulating voice frequency and voice speed for AI voice recognition service equipped with automated identification technology and analyze cyber threats by conducting extensive experiments on the automated identification system of commercial smartphones. Through this, we intend to inform the seriousness of the related cyber threats and raise interests in research on effective countermeasures.

Development of a modified model for predicting cabbage yield based on soil properties using GIS (GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발)

  • Choi, Yeon Oh;Lee, Jaehyeon;Sim, Jae Hoo;Lee, Seung Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.449-456
    • /
    • 2022
  • This study proposes a deep learning algorithm to predict crop yield using GIS (Geographic Information System) to extract soil properties from Soilgrids and soil suitability class maps. The proposed model modified the structure of a published CNN-RNN (Convolutional Neural Network-Recurrent Neural Network) based crop yield prediction model suitable for the domestic crop environment. The existing model has two characteristics. The first is that it replaces the original yield with the average yield of the year, and the second is that it trains the data of the predicted year. The new model uses the original field value to ensure accuracy, and the network structure has been improved so that it can train only with data prior to the year to be predicted. The proposed model predicted the yield per unit area of autumn cabbage for kimchi by region based on weather, soil, soil suitability classes, and yield data from 1980 to 2020. As a result of computing and predicting data for each of the four years from 2018 to 2021, the error amount for the test data set was about 10%, enabling accurate yield prediction, especially in regions with a large proportion of total yield. In addition, both the proposed model and the existing model show that the error gradually decreases as the number of years of training data increases, resulting in improved general-purpose performance as the number of training data increases.

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.

Comparative Analysis and Implications of Command and Control(C2)-related Information Exchange Models (지휘통제 관련 정보교환모델 비교분석 및 시사점)

  • Kim, Kunyoung;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.59-69
    • /
    • 2022
  • For effective battlefield situation awareness and command resolution, information exchange without seams between systems is essential. However, since each system was developed independently for its own purposes, it is necessary to ensure interoperability between systems in order to effectively exchange information. In the case of our military, semantic interoperability is guaranteed by utilizing the common message format for data exchange. However, simply standardizing the data exchange format cannot sufficiently guarantee interoperability between systems. Currently, the U.S. and NATO are developing and utilizing information exchange models to achieve semantic interoperability further than guaranteeing a data exchange format. The information exchange models are the common vocabulary or reference model,which are used to ensure the exchange of information between systems at the content-meaning level. The information exchange models developed and utilized in the United States initially focused on exchanging information directly related to the battlefield situation, but it has developed into the universal form that can be used by whole government departments and related organizations. On the other hand, NATO focused on strictly expressing the concepts necessary to carry out joint military operations among the countries, and the scope of the models was also limited to the concepts related to command and control. In this paper, the background, purpose, and characteristics of the information exchange models developed and used in the United States and NATO were identified, and comparative analysis was performed. Through this, we intend to present implications when developing a Korean information exchange model in the future.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Case study of information curriculum for upper-grade students of elementary school (초등학교 고학년 정보 교육과정 사례 연구)

  • Kang, Seol-Joo;Park, Phanwoo;Kim, Wooyeol;Bae, Youngkwon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • At the time of discussing the 2022 revised curriculum, the demand for normalization of information education is increasing. This study was conducted on the case of the information curriculum for the upper elementary grades responding to such needs. For 14 6th grade students of Elementary School B in K Metropolitan City, 4 core areas of the information curriculum, including computing system, data, algorithm & programming, and digital culture, were covered through classes. Cooperative classes were conducted between students by using the cloud-based application according to the class. In addition, it was intended to supplement the curriculum by suggesting ideas for artificial intelligence education area, and to improve the density of research with additional investigation on foreign information education cases. However, the need for independent organization of the information curriculum was strongly confirmed in that the current curriculum for information classes lacked sufficient school hours and had to be operated in combination with other subjects in the form of a project for this case study. It is hoped that this study will serve as a small foundation for the establishment of the information curriculum for the upper elementary grades in the future.