• Title/Summary/Keyword: Computer-aided manufacturing

Search Result 481, Processing Time 0.023 seconds

Development of Progressive Die CAD/CAM System for Manufacturing Lead Frame, Semiconductor (반도체 리드 프레임 제조를 위한 프로그레시브 금형의 CAD/CAM 시스템 개발)

  • Choi, J.-C.;Kim, B.-M.;Kim, C.;Kim, J.-H.;Kim, C.-B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.230-238
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64) and tool kit on the ESPRIT. Transference of data among AutoCAD, I-DEAS Master Series Drafting, and ESPRIT is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of six modules, which are input and shape treatment, production feasibility check, strip-layout, die-layout, modelling, and post-processor modules. The system can design process planning and Die design considering several factors and generate NC data automatically according to drawings of die-layout module. As forming process of high precision product and die design system using 2-D geometry recognition are integrated with technology of process planning, die design, and CAE analysis, standardization of die part in die design and process planning of high pression product for semiconductor lead frame is possible to set. Results carried out in each module will provide efficiencies to the designer and the manufacturer of lead frame, semiconductor.

  • PDF

Total joint reconstruction using computer-assisted surgery with stock prostheses for a patient with bilateral TMJ ankylosis

  • Rhee, Seung-Hyun;Baek, Seung-Hak;Park, Sang-Hun;Kim, Jong-Cheol;Jeong, Chun-Gi;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.41.1-41.6
    • /
    • 2019
  • Backgrounds: The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses. Case presentation: A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication. Conclusion: For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option.

Complete mouth rehabilitation with fixed implant-supported prosthesis using temporary denture and dental CAD-CAM (완전 무치악 환자에서 임시 의치와 치과용 CAD-CAM을 활용한 전악 고정성 임플란트 회복 증례)

  • Jeon, Sol;Yoon, Hyung-In;Lee, Jae-Hyun;Yeo, In-Sung Luke;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.100-109
    • /
    • 2022
  • Installation of dental implants at optimal angles and positions is critical in long-term stable implant-supported restorations. Surgery and prosthodontic procedures should be performed accurately as the treatment is planned. In this clinical case, Computer aided design and manufacturing technology was used not only to establish a precise surgical plan, but also to fabricate both provisional and definitive fixed prostheses. A surgical guide was designed to install the implants at proper positions for the definitive prostheses. The patient's esthetic information, which was necessary for the new provisional and definitive fixed prostheses, was obtained from the existing temporary dentures. Finally, the complete mouth fixed implant-supported rehabilitation using monolithic zirconia provided the patient with functionally and esthetically satisfactory prostheses.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

A Simulation Study on the Development of Injection Mold for the Parts of Phone Camera Lens Module (시뮬레이션을 활용한 폰카메라 렌즈모듈 부품용 사출금형개발)

  • Kim, Hye Jeong;Kim, Jae Hoon;Kim, Yeong Gyoo;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2013
  • The demand of a camera-lens-module which is installed in mobile phone has been increased explosively as the increase of mobile phone market. Recently, two missions are given to the parts manufacturer of lens module, and they are how to keep the quality of injection moulding process as the increase of resolution, and how to decrease manufacturing cost. In this paper, a simulation study is introduced which is used for developing barrel and shield considering the double-cassette type of mould. At first, the simulation for injection process using Mold Flow$^{TM}$ is applied in the phase of mould design, and mechanical simulation using DPM Assembly$^{TM}$ is applied for collision detection between picking robot and mould. As a result, the productivity increased more than 300%.

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

Production of Window Motor Assembly Parts in Automotive Body (자동차 전장에서 윈도우 모터 조립 부품의 생산)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2012
  • Power window motor assembly including ECU system is important to doors of automobile. This study is done for own development instead of importing of power window motor assembly. This paper is written under five specific subjects. The first, making of prototype sample and analysis of mass-production problem using CAE, the second, design of mass-production mold(2D and 3D), the third, manufacturing of sample mold, the fourth, tryout and measuring of 3 dimensions, the fifth, data analysis and mold modify. In the among them, product sample and analysis of mass-production using CAE, design and manufacture of mass-production mold, and production of sample mold are successfully done. In the results, it is made clear that two cavity and one gate are proper to make a mold of power window motor assembly housing. Besides, it is acquired own technology for mass-production of power window motor.

In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment

  • Aladag, Akin;Oguz, Didem;Comlekoglu, Muharrem Erhan;Akan, Ender
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • PURPOSE. To determine wear amount of single molar crowns, made from four different restoratives, and opposing natural teeth through computerized fabrication techniques using 3D image alignment. MATERIALS AND METHODS. A total of 24 single crowns (N = 24 patients, age range: 18 - 50) were made from lithium disilicate (IPS E-max CAD), lithium silicate and zirconia based (Vita Suprinity CAD), resin matrix ceramic material (Cerasmart, GC), and dual matrix (Vita Enamic CAD) blocks. After digital impressions (Cerec 3D Bluecam, DentsplySirona), the crowns were designed and manufactured (Cerec 3, DentsplySirona). A dualcuring resin cement was used for cementation (Variolink Esthetic DC, Ivoclar). Then, measurement and recording of crowns and the opposing enamel surfaces with the intraoral scanner were made as well as at the third and sixth month follow-ups. All measurements were superimposed with a software (David-Laserscanner, V3.10.4). Volume loss due to wear was calculated from baseline to follow-up periods with Siemens Unigraphics NX 10 software. Statistical analysis was accomplished by Repeated Measures for ANOVA (SPSS 21) at = .05 significance level. RESULTS. After 6 months, insignificant differences of the glass matrix and resin matrix materials for restoration/enamel wear were observed (P>.05). While there were no significant differences between the glass matrix groups (P>.05), significant differences between the resin matrix group materials (P<.05) were obtained. Although Cerasmart and Enamic were both resin matrix based, they exhibited different wear characteristics. CONCLUSION. Glass matrix materials showed less wear both on their own and opposing enamel surfaces than resin matrix ceramic materials.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.