• Title/Summary/Keyword: Computer-Numerical Control

Search Result 406, Processing Time 0.031 seconds

Dynamic Output-Feedback Receding Horizon H$_{\infty}$ Controller Design

  • Jeong, Seung-Cheol;Moon, Jeong-Hye;Park, Poo-Gyeon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.475-484
    • /
    • 2004
  • In this paper, we present a dynamic output-feedback receding horizon $H_{\infty}$controller for linear discrete-time systems with disturbance. The controller is obtained numerically from the finite horizon output-feedback $H_{\infty}$optimization problem, which is, in fact, hardly solved analytically. Under a matrix inequality condition on the terminal weighting matrix, the monotonic decreasing property of the cost is shown. This property guarantees both the closed-loop stability and the $H_{\infty}$norm bound. Then, we extend the proposed design method to a reference tracking problem and a problem for time-varying systems. Numerical examples are given to illustrate the performance of the proposed controller.

Modeling and Stability Analysis for Multiple Mobile Robot System by Passivity-based Control via Augmented System (시스템 확장에 의한 수동성 제어에 기초한 다중 이동로봇 시스템의 모델링 및 안정성 해석)

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2411-2413
    • /
    • 2004
  • In this paer, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative mobile robots. The considered system convey a common rigid object in a horizontal plain. The effectiveness of proposed control algorithm is examined by numerical simulation for cooperative tasks.

  • PDF

Position control characteristics in a Sun-seeker control system (태양추적 제어계의 위치제어특성)

  • Baek, Nam-Seok;Yang, Weon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.429-431
    • /
    • 1998
  • In this paper, the sun-seeker control system that is driven by DC motor is modeled on linear 2nd order time invariant system under some assumptions. For the analysis of output characteristics, theory is developed using digital control methods. Computer simulation and numerical analysis has been performed.

  • PDF

Proposal Model for Programming Numerical Control Lathe Basis on the Concept by Features

  • N.Ben Yahia;Lee, Woo-Young;B. Hadj Sassi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 2001
  • The aim of the present work is to propose a model for Computer Aided programming of numerical Control lathe. This model is based on the concept by features. It has been developed in an Artificial Intelligence environment, that offers a rapidity as well as a precision for NC code elaboration. In this study a pre-processor has been elaborated to study the geometry of turning workpiece. This pre-processor is a hybrid system which combine a module of design by features and a module of features recognition for a piece provided from an other CAD software. Then, we have conceived a processor that is the heart of the CAD/CAM software. The main functions are to study the fixture of the workpiece, to choose automatically manufacturing cycles, to choose automatically cutting tools (the most relevant), to simulate tool path of manufacturing and calculate cutting conditions, end to elaborate a typical manufacturing process. Finally, the system generates the NC program from information delivered by the processor.

  • PDF

Using artificial intelligence to solve a smart structure problem

  • Kaiwen, Liu;Jun, Gao;Ruizhe, Qiu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.393-406
    • /
    • 2023
  • Smart structures are those structure that could adopt some behavior to prevent instability in their responses. The recognition of stability deterioration has been performed through rigid mathematical formulations in control theory and unpredicted results could not be addressed in control systems since they are able to only work under their predefined condition. On the other hand, incorporating all affecting parameters could result in high computational cost and delay time in the response of the systems. Artificial intelligence (AI) method has shown to be a promising methodology not only in the computer science by at everyday life and in engineering problems. In the present study, we exploit the capabilities of artificial intelligence method to obtain frequency response of a smart structure. In this regard, a comprehensive development of equations is presented using Hamilton' principle and first order shear deformation theory. The equations were solved by numerical methods and the results are used to train an artificial neural network (ANN). It is demonstrated that ANN modeling could provide accurate results in comparison to the numerical solutions and it take less time than numerical solution.

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

Development of Creating Continuous and Common Cutting NC Data Program (소부재 연속/공용 절단 데이터 생성 프로그램 개발)

  • Hyun, Sung-Yeol;Oh, Sung-Kwon;Huh, Ok-Jae;Shim, Hyun-Sang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.101-105
    • /
    • 2011
  • In most shipbuilding company, cutting procedure is proceed by cutting machine which run by CNC(Computer Numerical Code) data. In our cutting process, all CNC data is created by our nesting post processor system automatically. Among them, in case that cutting piece in the remnant plate, our system creates only one piece CNC data. Because remnant plate is not typical shape, and ship designers don't know remnant plate shape and quantity. In can happen some merit and good point if we modify 1:1 piece NC data by shorten cutting path, reducing cutting time or re-arrangement piece. For modifying cutting data, outside workers have to call to ship designer or have to go to NC control room where control the CNC system and cutting machine. It makes stop work process, and it waste time. In this paper, we introduce a program that can modify and replace 1:1 NC data with continuous or common NC data automatically.

  • PDF

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

LCD with Tunable Viewing Angle by Thermal Modulation of Optical Layer

  • Gwag, Jin-Seog;Lee, You-Jin;Han, In-Young;Yu, Chang-Jae;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2009
  • In this paper, we review the proposed liquid crystal display (LCD) with a tunable viewing angle consisting of a conventional liquid crystal display (LCD) panel and a thermally variable retardation layer (TVRL) characterized by uniformly aligned LC film with transparent indium-tin-oxide electrodes for Joule heating. In the TVRL, nematic phase is transitioned into isotropic by Joule heating. The numerical calculation showed that the intrinsic wide viewing angle was achieved at the isotropic phase of the TVRL by Joule heating, whereas the narrow viewing angle was obtained at the nematic phase of the TVRL. The simulated and experimental results of the proposed LCD show continuous and symmetrical viewing angle characteristics by tuning the retardation of TVRL using Joule heating. The structure of the viewing angle control proposed here is adoptable to all LCD modes with wide viewing angle characteristics.

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF