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A Learning Algorithm of Fuzzy Neural Networks
Using a Shape Preserving Operation

Jun Jae Lee, Dug Hluum_ Hong, and Seok Yoon Hwang

Abstract

We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes
of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for
classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural
network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact results in learning the
network. And we illustrate our approach by computer simulations on numerical examples.

I. Introduction

Most of the supervised learning methods of neural
networks, for example the perceptron, the BP(back
propagation) algorithm, and the RCE(reduced Coulomb
energy) network, utilize only numerical data. On other hand,
fuzzy control is one of the most useful approaches for
utilizing expert knowledge. Many hybrid approaches of fuzzy
control systems and neural networks proposed for utilizing
numerical data. Recently, learmning methods of neural
networks have been proposed in order to utilize not only
numerical data but also expert knowledge represented by
fuzzy if-then rules[1-9]. The main contribution of those
papers is to propose an idea for integrating human knowledge
and numerical data into a single information processing
system( fuzzy control system or classification system). In the
learning of neural networks for constructing classification
systems, fuzzy if-then rules such as "If x, is large and xj
is small, then x,=(x,,x,) belongs to class 1" are utilized
as well as numerical data that are usually employed in
conventional supervised learning methods, On other hand, for
constructing fuzzy control systems, fuzzy if-then rules such as
“If x, is small and x, is large, then y is small” are utilized
in the learning of neural networks as well as numerical data.
In order to deal with linguistic values such as
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"on

"large,” "small,” and “medium,” an architecture of neural
networks that can handle fuzzy input and output vectors is
needed.

Muitilayer feedforward neural networks can be fuzzified by
replacing real inputs and real targets with fuzzy numbers{1,2].
Several approaches have been proposed for learning by
fuzzified neural networks[3], Hayashi et al.{1] proposed a
fuzzy back-propagation algorithm, which can be viewed as
direct fuzzzfication of the standard back-propagation
algorithm[4]. The algorithm was obtained by replacing real
numbers used for inputs outputs, targets, and weights in the
standard back-propagation algorithm with fuzzy numbers. It
was reported in [3] that the algorithm converged to the wrong
weights. Hayashi et al. [1] also discussed a back-propagation
algorithm for individual e-cuts of fuzzy weights. Because the
algorithm independently updates q-cuts of fuzzy weights, one
is mot surc that the updated fuzzy weight in fact forms a
fuzzy set(see [1,3]). Ishibuchi et al. proposed an architecture
of multilayer feedforward neural network for fuzzy input
vectors[5], and that architecture was applied to the
implementation of fuzzy if then rules in [6,7]. An a-cut
based . backpropagation algorithm for the supports of
symmetric tringular fuzzy weights was derived in [8] and was
also extended to the learning algorithm that could be applied
to the learning of fuzzy weights of various shapes such as
nonsymmetric triangular and trapezoidal types[9]. The
learning algorithm derived in [9] is a generalization of the
former work that was applicable only to symmetric triangular
fuzzy weights or nonsymmetric trapezoidal fuzzy weights.
The input-output relation of each unit was defined by the
extension, principle of Zadeh[10]. Outputs from the fuzzy
neural networks are numerically calculated by interval
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arithmetic[11} for level sets( i.e., @ -cuts ) of fuzzy weigths
and fuzzy inputs. The above operations on fuzzy numbers are
performed numerically on level sets(i. e., a-cuts). The #
-level set of a fuzzy number A is defined as

[Al,= {xeRlual(x) =k} for 0<{h<l1, where R is the set of
all real numbers. Because level sets of fuzzy numbers are
closed intervals, the above operations of fuzzy numbers can
be computed for #-level sets from interval arithmetic[11].
Thus for each #, k-level sets of €ach input-output pair are
used in the learning by the fuzzified neural network. But for
each }, the learning time of the algorithm for fuzzy data is
about twice as long as that of the BP algorithm for numerical
data. For obtaining more accurate results, it also requires a
lot of levels. Therefore, it is complicated and much
time-consuming than the neural network for numerical data:
In practical computation, it is natural to require the preserving
the shape of fuzzy numbers during the multiplication.
Unfortunately, there are no results about multiplication.

" In this paper, we propose the simple computing method,
which is based on the shape preserving operations of fuzzy
numbers, without using #-levels. By introducing T,-based
fuzzy arithmetic operation inducing a shape preserving
operation of L—R fuzzy numbers, we derive a learning
algorithm for fuzzy neural networks. T, is known as a shape
preserving operation under addition and subtraction. Likewise,
it is also proved in our paper to satisfy a shape preserving
under multiplication(see the proof in Appendix). Therefore, it
should be noted that this is simple and fast, since it can be
peformed only on a center point and two spreads without
doing fuzzy operations on many level sets. This method also
- does fuzzy arithmetic operations of fuzzy numbers with exact
results. Another important feature is that it provides means
of controlling the growth of uncertainty during calculations.
Namely, shape preserving arithmetic operations of L—R
fuzzy numbers allow to controll the resulting spread. Our
fuzzified neural networks are three-layer feedforward
networks with multiple inputs and multiple outputs. And we
define a cost function that measures the difference between a
fuzzy target vector and an actual fuzzy output vector. Then,
a crisp learning algorithms is derived from the cost function
for adjusting center, and spreads of each fuzzy number of
L— R type. Finally we illustrate our approach by computer
simulations on numerical examples.

I, Fuzzified neural network

1. Fuzzified neural networks architecture

The inputs, weights, and biases of the standard feedforward
neural network can be extended to fuzzy numbers. The
fuzzification of neural networks means this extension[9].

Therefore the fuzzification does not change the neural
network architecture. That is, the fuzzified neural network has
the same network architecture as the standard neural network.

Let us denote fuzzy numbers and real numbers by
uppercase letters(e.g., A,B,.) and lowercase letters(e.g.,
a,b,...), respectively. Then the input-output relation of the
fuzzified neural network can be written for a fuzzy input
vector X,=(X, Xp.....,X,,) as follows:

Input units :

OM=X,,,~,i=1,2,"',n1_ (1)

Hidden units :

Op/ = fNety), ) . e}
Nel‘pizz;%'(gom@@j, i=1,2,,np.

Output units :
Opkz f(Net,,k), (3)

Nety= Z; Wy &®0,D0,, k= 1,2, 4.

where X ,, is a fuzzy input, W, and W, are filz'zy weights,
O, and @, are biases, X and & are fuzzy multiplication
and addition operators, respectively. The architecture of the
fuzzified neural network is shown in Fig. 1.

Fuzzy weights I/, &
Fuzzy biases &,

Hidden units
Fuzzy weights Wji
Fuzzy biases Q]

Input units

X

P pi pny Fuzzy inputs
Fig. 1. Architecture of a three-layer feedforward fuzzified
neural network

2. Calculation of the input-output relation under a
shape preserving operation

Before describing the input-output relation in our fuzzified
neural network, -we briefly mention the previous
approach[8,9]. The input-output relation (1)-(3) is defined by .
the extension principle of Zadeh[10]. This means that fuzzy
arithmetic is employed for calculating the input-output
relation of the fuzzified neural network. In [9], the following
addition, multiplication, and nonlinear mapping of fuzzy
members were used for defining. fuzzified neural network:
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ta+p(2)=max {za(x) \ug(y) | z=x+ 3}, @
#ap(2) = max {ga(x) A\ug(y) | 2=2xy}, )
£ aven(2) = max (¢ jel(x) | 2= A2}, ©)

where A, B, Net are fuzzy numbers, u,(-) denotes the
membership function of each fuzzy number, and /\ is the
minimum operator. These operations are illustrated in Fig. 2.
The shape of fuzzy numbers is preserved under the addition,
i.e., in Fig. 2, the shape of (c) after dperation is identical to
that of (b) and (c), but under multiplication it does not.
Therefore, it is complicated and time-consuming since the
operation of fuzzy numbers must be numerically performed
on level sets(i.e., ao-cuts). For obtaining more accurate results,
it requires a lot of levels.

In this paper, to preseve the shape of fuzzy number, T,
-based addition and multiplication of fuzzy numbers of L— R
type are introduced. Since the shapes of most membership
functions is of type L-— R, we are concemned about fuzzy
numbers of typé L~R A fuzzy number is a convex subset
of the real line R with a normalized membership function.
A triangular fuzzy number g denoted by (a4, a, B) is
defined as

I—Jg—;—tl' if a—a < ¢t < g,
af)= 1——117),—”- fa<t<a+h

0 otherwise,

where g = R is the center, ¢ > 0 is the left spread, and
B > 0 is the right spread of 4. If ¢ = fJ, then the
triangular fuzzy number is called a symmetric triangular
fuzzy number and denoted by (a4, «@). A fuzzy number

a = (a,a,p) 1z of type L—R is a function the reals into
the interval [0,1] satisfying

R(+5%)

w0 u(5)

for a< ¢t < a+/9,'

for a—a< t < q,
else,

where L and R are non-increasing and continuous
functions from [0,1] to [0,1] satisfying L(0)=R(0)=1 and
L(1)=R(1)=0. A binary operation 7 on the unit interval
is said to be a triangular norm [12] (t-norm for short) iff 7
is associative, commutative, non-decreasing and T(x,1)=x«
for eachx = [0,1]. Moreover, every t-norm satisfies the
mequality,

T.(a,b)<T(a, b)<minla, b) = T){a, b)
where,

a if b=1,
TSla, b)={b if a=1,
0 otherwise.

The usual arithmetical operation of reals can be extended
to the arithmetical operations on fuzzy numbers by means of
Zadeh’s extension principle[10] based on a triangular norm
7. Let A, B be fuzzy numbers of the real line R. The fuzzy
number arithmetic operations are summarized as follows :
Fuzzy number addition & :

(ADB)2) = suby+y=2 T(A(%), B(»))

Fuzzy number multiplication & :

(AR B)(2) = supx.y=zT(IZI(x) , B(»)

The addition(subtraction) rule for L — R fuzzy numbers is
well known in the case of T - based addition and then the

' resulting sum is again on L— R fuzzy numbers, i. e., the

shape is preserved. It is also known that T, - based addition

preseves the shape of L — R fuzzy numbers [13,14]. In
practical computation, it is natural to require the shape
preservation of fuzzy numbers during the multiplication.
Unfortunately, there are no results about multiplication. Of
course, we know that T, - based multiplication does not
preserve the shape of L — R fuzzy numbers. In this section
we show that, for a given shapes L and R, T, induces a
shape preserving multiplication of L — R fuzzy numbers and
we use 7T, - based arithmetic operations to study fuzzy
neural networks. This method simplifies fuzzy arithmetic
operations of fuzzy numbers with exact results.

Another important feature is that it provides a mean of
controlling the growth of uncertainty during calculations.
Namely, shape preserving arithmetic operations of L—R
fuzzy numbers allow to controll the resulting spread. Now, let
T=T, be the weakest t-norm and, let A={(a,a, B4)ir

B=(b,ap,85) 1z be two L— R fuzzy numbers. By [13,14],
ADB= (ﬂ,aA,BA)LR@(b, @g, BB) Lk ) ()]
= (a+ b, max(aa,ap), max(Ba, Bp) k.
If L=R, we can easily show that
AOB= (a,a4,84) 1#EXb, as, BB 1r

(a,a4,B84) LfX—0b, Bp, ap) 1x 8
(@a— b, max(a,, Bp), max (agp, Ba)) 1z

From these two equations, we know that 7, is a shape
preserving operation under addition and subtraction. Likewise,
it is also shape preserving under multiplication(See the proof
in Appendix). Therefore, it should be noted that this is
simple and fast, since it can be peformed only on center point
and spreads without doing fuzzy operations on level sets.

Let Ax =ﬁl—efx be the activation function of hidden units
and output units of our fuzzy neural network. For a fuzzy
number A= (aq, a4, Ba)rr, We define a fuzzy number AA)
of L—R type by



134 LEE et al. : A LEARNING ALGORITHM OF FUZZY NEURAL NETWORKS USING A SHAPE PRESERVING OPERATION

AB)=(fa),Aa)—Ra—as),Ra+Ba)— L) rr.

To simplify the computation, we assume in the paper that
the fuzzy inputs, fuzzy weights, and fuzzy biases are fuzzy
numbers of L— R type with L= R, and the center of fuzzy
inputs are nonnegative. These operations are illustrated in Fig.
3.
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Fig. 2. Fuzzy number ope- Fig. 3. T, -based fuzzy num-
ration : addition and multi- ber operation: addition and
plication in [6,7]. The shape multiplication. The shape of
of fuzzy numbers is not fuzzy numbers is preserved.
preserved during the multi-
plication. '

Let us fuzzify a three-layer feedforward neural network
with #, input units, #; hidden units and z, output units.
And let input vectors, target vectors, connection weights and

-biases be fuzzy numbers of L—R type. Then the
input-output relation of each unit of the fuzzified neural
network can be written as follows:

By using the operations in (7), (A.1) and (A.2), the above
relations are rewritten as follows :

Input units :

O,,,-=(om-,o';,-.o’;,-)m

Hidden units :

0 =04, 0%, %) Lr= K Nety)

Net,; = (W Q0 )P B W, R0,,)D8;
(z;w,,o,,+g max ; (Max ,zq( w50 5, 05m0;), MaX o050 5, Ohw;d), (9)
65), max ; (max ,o{who ,, 0%, max 4, ol who,, oLlwid), )
= (nety, net‘,;, nety) ix.
L
where  W;=(w;;, wi;, wi) L.
Output units:

Op=(0p. 0%, 03 L& = A Net)
Nety= (W @0 D - W, 00,,)D6, 10)

(Zwb"z‘*' 04, max ; (max ,»o{ whoy, 0fwe), Max ,, ol whoy, of
lwid), 65, max ; (max 2o wo,;, ofwy), max uco(wkoy, oy lwdd), 69) L
= (nety, neth, nets) 1k

Thus, one unit in the conventional neural network consists
of three units of center, left spread and right spread neurons.

3. Learning algorithm

To derive a learning algorithm of our fuzzy neural
network, we define a cost function for the fuzzy output O,

from the k-th output unit and the corresponding fuzzy target

Tpk: (tpk, tL 5 tfk) LR
as follows :

&= 2 em an
ew="5 {(tu— 00"+ (th— o) +(thi—0}?).
By using the cost function e¢,, the fuzzy weights W, of the

fuzzified neural network are adjusted as follows:

wi(t+ 1= wi (D + 2w (D),
wit+ D)= wi(D+ 2 wiD),
wit+ 1= wi(D+ 2wi(D),

Bw) == TR e Swyli=D), a2
Leay_ de,

awih=—ryct D, a3)

suf(h== 12k +a- swf(t-1), (14)
ki

where 7 is a learning constant, ¢ is a momentum constant
and { indexes the number of adjustments. The explicit
calculation of each derivative in (12), (13) and (14) is shown -
in the Appendix. The fuzzy weights W, and the fuzzy biases
6, O, are changed in the same manner as the fuzzy weights

W,. (see the Appendix.). The learning algorithm in our
fuzzififed neural netwok is the same as the standard
back-propagation algorithm execept updating three fuzzy
number values( center, left spread, right spread) instead of
one real .value. On the other hand, the method in [8,9] is
calculated on all %-levels. Therefore, it is complicated and
time-consuming.

IMI. Simulation Results

In this subsection, we illustrate the derived learning
algorithm by two simple numerical examples. In these two
examples, we used the following specifications of the learning
algorithm.

(1) Number of hidden units:six units

(2) Stopping condition: 100,000 iterations of the learning
algorithm.

(3) Learning constant: 7 = 0.5
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(4) Momentum constant: ¢ = 0.9
(5) Initial values of the fuzzy weights and the fuzzy biases:
random real numbers in the closed interval[0,1].

1. Example 1

In this example, we apply the proposed method to the
approximate realization of a nonlinear mapping of fuzzy
numbers. Let us assume that both the input space and the
output space of this mapping are the unit interval [0,1].
Therefore, we can depict each fuzzy input-output pair
(X,, T,) in the input output space as shown in Fig. 4. The
rectangle in Fig. 4 shows the cartesian product of supports of
the fuzzy input X, and the fuzzy target T, . Let us assume
that three fuzzy input-output pairs in Fig. 5 are given as
training data. A fuzzy neural network with a single input unit,
six hidden units and a single output unit was trained by the
proposed learning algorithm. Fuzzy outputs from the trained
fuzzy neural network are shown in Fig. 6 for the three fuzzy
inputs used in the learning and two new fuzzy inputs.
Calculation for center(dot), left and right spread(boundary)
point is perforemed to be depicted while that for all h-level
sets is in[8,9]. From the comparison between Fig. 5 and 6,
we can observe the good generalization for the new fuzzy
inputs as well as the good fitting to the fuzzy training data.
The number of iteration and epoch are 39597 and 10754,
respectively.

10 1.0

05 . 05

00 05 10 00 05 1.0
Input value Input value

Fig. 4. Illustration of the Fig. 5. Fuzzy training data in
input-output pair (X, T,) in Example 1.
the input-output space

05

0.0 05 1.0
Input value

Fig. 6. Fuzzy outputs from the trained fuzzy neural network
in Example 1.

2. Example 2

Since real numbers can be viewed as a special case of
fuzzy numbers, the proposed fuzzy neural network can handle
real inputs as well as fuzzy inputs. In this example, we apply
the proposed method to the approximate realization of a
nonlinear fuzzy function that maps a real number to a fuzzy
number. Training data in this example consist of pairs of real
inputs x,’s and fuzzy targets 7,’s. Each pair is depicted in
the input-output space as shown in Fig. 7. The triangle in
Fig. 7 shows the membership function of the triangular fuzzy
target T,. Let us assume that six pairs of real inputs and

fuzzy outputs in Fig. 8 are given as training data. Using these

training data, we trained a fuzzy neural network with a single
input unit, six hidden units and a single output unit by the
proposed learning algorithm. The real input x, is treated as

a fuzzy number with the following membership function:

_{ 1 if x=x,,
/‘xl,(x)_{ O lf x¢xp‘

Fuzzy outputs from the trained fuzzy neural network are
shown in Fig. 9 for 1l real inputs: x = 0.0, 0.1, ... , 1.0.
From the comparison between Fig. 8 and Fig. 9, we can
observe the good generalization for the new real inputs as
well as the good fitting to the fuzzy training data. The
number of iteration and epoch are 89904 and 14983,
resps ctively.

05 >
05 D )
> D D
00 05 10 00 05 1o
Input value Input value

Fig. 7. Illustration of the Fig. 8. Fuzzy training data in
input-output pair Example 2.

10

Py,

0.0 05 1D
Input value

Fig. 9. Fuzzy outputs from the trained fuzzy neural network
in Example 2.
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3. Example 3

In this example, we apply the proposed method to the
approximate realization of fuzzy if-then rules by a fuzzy
neural network. Let us assume that the following three if-then
rules are given:

if x is small then y is small.

if x is medium then y is medium.

if x is large then y is large
The membership function of linguistic values such as “small”,
"medium” and “large” are given Fig. 10. From the above
fuzzy if-then rules, we can obtain the following training data:

{ (X, TR} = {(small, small), (medium, medium), (large, large) }

It should be noted that nonsymmetric fuzzy targets are
include in these training data. They are depicted in Fig. 11
in the same manner as in Fig 4 and 5.

Using the training data in Fig. 11, we trained a fuzzy
neural network with a single input unit, six hidden units and
a single output unit. Fuzzy outputs from the trained fuzzy
neural network are shown in Fig. 12 for new fuzzy inputs

"medium small” and “medium large”. From the comparison -

between Figs. 11 and 12, we can observe the good
generalization to the new fuzzy inputs. Therefore, we can
obtain the following two fuzzy if-then rulses:

If x is medium small then y is medium small.

If x is medium large then y is medium large.
It should be noted that these two fuzzy if-then rules coincide
with our intuitive interpolation of the given three fuzzy
if-then rules. Therefore, we can conclude that the trained
fuzzy neural network found valid fuzzy if-then rules in this
example.

loS MS M ML L

Membership

0.0 025 05 075 1.0
Input value (Qutput valuc)

Fig. 10. Membership function of five linguistic values
(S:small ; MS : medium small;, M:medium ; ML
: medium large; L:large).

10, 10

05 . 05

—

00 05 10 0o 05 10
Input value Input value

Fig. 11. Fuzzy training Fig. 12. Fuzzy outputs from the
data in Example 3. trained fuzzy neural network for
new fuzzy inputs in Example 3

V. Conclusion

In this paper, we derived a learning algorithm of fuzzy
neural networks with fuzzy numbers of L — R type by using
T,-based operation. If the inputs and targets are of L— R
type, application of the proposed method is simple and also
derives the good approximation. The effectiveness of the
derived learning algorithm was demonstrated by computer
simulations. While the derived learning algorithm for fuzzy
numbers of L — R type worked in this paper, the extensions
to the case of more general fuzzy numbers are left for future
studies.
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Appendix

A.l T, -based Multiplication

T, - based multiplication is as follows:

Case 1) Let a,b>0. Then for z<gab it is
(AQB)2)= sup,.,—.Tu(A(x), B(y)

w43, 7.2)

— maX(L( a—2z/b )L( b—z/a ))

I

a4 ag
= max(1{<05°) 1)
= L[ (ab—2)/ max(a,b,apa)]
for z > agb— max(a.b,aga), it is O otherwise.
Similarly, for z > ab we get
(AQ B)(2) = R((z— ab) | max (Bb, Bza))

for z < ab—max(B.4b,Bga) and it is zero otherwise.

It follows

12[®B= (ab, max (@ 4b, apa), max (Bab, Ba®) 1k, (A-1)
In a similarly manner, we have the following cases;
Case II) For a < 0, b < 0 it is
A®B= (ab, max (—B4b, — Bpa), max(— @b, — apa)) r
Case IMM) Fora = 0, b = 0 it is
;Z[@B: (0, aqb, Bad) r
Case V) Fora = 0, b =0 it is
AQB=1(0, apa, B59) 1k,
Case V) Fora =0,b =01t is
ARB=1(0,0,0) =1 (2
where,
if x =0,

_ (1
To(x = { 0 otherwise.
Case VI) For a < 0, b > 0, we assume L= R, additionally,

then it is

AR B=(ab, max(ab, — Bpa), max(Bab, — ¢52)) rr (A-2)

A.2. Calculation of Derivatives

gey _dey, de,

. . ¢ -
1) Derivatives in output laye B wl” duk

de, __de, J mety de, 9 mely de, 0 nmetyx
dwy 0 mety Jwy 0 nety. Owy 0 netyr  Owy
de,  de, 3 mety de, 0 met,y de, 0 metys (a-3)
dwy 0 mety, dwk 3 mety.  Awk 3 netyr Gk
de,  de, J mety de, 0 mety de, .3 metyr
w9 mety Swk d mety  dwf 3 metyr  wk
And
de,
Bnetﬂ, _(OM—?M)OM(I‘OM),
Sk = (ol et metE) 1 = fn et meth) (A-4)
de,
anth,, =(of — 2R netyt+ neti)(1— Anety+ netsy)
From gnety in (10), we obtain
onety, o J nety —0= d nety, (A-5)
Owy; 7wk o
From netl, in (10), we obtain
dnety, Olf’g if wy20 andolgi' W= neLt,];k,
dwy; =1 0y if wk,<0 ando,,,- . Iwk,{ = Opk,
’L otherwise,
onety ={opj if o,,j-.wé: neth, (A-6)
dwg otherwise,
anetﬁk =0
aWE )
And also from netf in (10), we obtain
et oy Lif wy=0 andoj  Wiy= nety, i
awk,_ =y — 0y if wk,(() ando,,,- . Iwk,{ = nety,
. 0 otherwise,
dnet %
aw’,;,p =Y, (A-7
R .
onety ={o,,]~ if 0y wi=nety,
dwr 0 otherwise.
By the above equations, we can calculate

de, Jde, Jde,
wy * dwk’ dwk

as the fuzzy weight W, with O, = (1, 0, O)g, the dervatives

. Since the fuzzy bias @, can be viewed

de, de, Ode . . .
55%55",??0% for the learning of @, can be obtained in

the same manner as gﬁ,’;,%}%,%, respectively.
de, de, Jde,
w;; awﬁ ’ aw}f

2) Derivatives in hidden layer
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de, __Jde, dnety de, dnety de, dnety
dw;  Onet, Jw; nety dwy onets Ow;
de, _ _Oe, Omety de, dnety de, onett (A-8)
dwhs ~ Omet, Jwy dnety dws onett dwk
de, __de, Onety de, dnets de, onetk
dwk — onety owt | ameth owt ' ometl owh
On the other hand,
de, =§:( de, dnety de, dneth de, dneth,
dnet, ' Onely Onety = Oneth Onmely ' oneth Onety

de, & de, Onety de, Omethy, de, neth A-9
anet,L,,»—g( dnety oneth = Oneth dnety  dneth 3net,L,,~) (A-9)

de, #;‘2‘1( de, anetp,,+ de, 8net§,, de, Onmeth,
dnetl ~ SV Onetw dmety ' dnety dnetl onets, ometh

And from (10), we obtain

Inety

net, — V" 0l 0p), (A-10)
Onetw _ \_ Onetu
onets onets

dnety :{ who(1—0y)  if net;‘k:'wf,-oﬁ,
dnety 0 otherwise,
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A-11
L wif nety— nets)(1— A nety— netly)) ( )
dnety, 7
onets if wy=0 and nety= opwy,
” 0 otherwise,

et lwel A nety+ netid(1— Anety+ nety))
——H& = if wy<0 and neth=ofws,
Inety; K . Nk
K4 0 otherwise.

dnety :l w0, (1—0y) if neth=wkoy,

3 nety 0 otherwise,
et (1wl nety— neth) (1= nety—netp))
_ﬁ_a"et; = if w,<0 andneth= 0% lws, (A-12)
nely 0 » otherwise, "
P wif netwt neti)(1—Rnety+ nety))
_Z‘it}??i = if wy>0 and netl=ofwy,
onety 0 ) otherwise.

By applying the equations (A-5), (A-6) and (A-7) to the
. de de de

. 4 D i 2

hidden layer, we can obtain w; —aw,’; and P from

the equations (A-8) ~ (A-12).
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