• Title/Summary/Keyword: Computer vision technology

Search Result 666, Processing Time 0.027 seconds

A study on the measurement of flank wear by computer vision in turning (선삭에서 컴퓨터비젼을 이용한 플랭크 마모 측정에 관한 연구)

  • Kim, Young-Il;Ryu, Bong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.168-174
    • /
    • 1993
  • A new digital image processing method for measuring of the flank wear of cutting tool is presented. The method is based on computer vision technology in which the tool is illuminated by two halogen lamps and the wear zone is visualized using a CCD camera. The image is converted into digital pixel and processed to detect the wearland width. As a conclusion, it has been proved that the average wearland area and mzximum peak values of the flank wear width can monitored effectively to a measuring resolution of 0.01mm.

  • PDF

A Basic Study on the Instance Segmentation with Surveillance Cameras at Construction Sties using Deep Learning based Computer Vision (건설 현장 CCTV 영상에서 딥러닝을 이용한 사물 인식 기초 연구)

  • Kang, Kyung-Su;Cho, Young-Woon;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.55-56
    • /
    • 2020
  • The construction industry has the highest occupational fatality and injury rates related to accidents of any industry. Accordingly, safety managers closely monitor to prevent accidents in real-time by installing surveillance cameras at construction sites. However, due to human cognitive ability limitations, it is impossible to monitor many videos simultaneously, and the fatigue of the person monitoring surveillance cameras is also very high. Thus, to help safety managers monitor work and reduce the occupational accident rate, a study on object recognition in construction sites was conducted through surveillance cameras. In this study, we applied to the instance segmentation to identify the classification and location of objects and extract the size and shape of objects in construction sites. This research considers ways in which deep learning-based computer vision technology can be applied to safety management on a construction site.

  • PDF

Transputer-based Pyramidal Parallel Array Computer(TPPAC) architecture (Prelimineary Version) (트랜스퓨터를 사용한 피라미드형 병렬 어레이 컴퓨터 (TPPAC) 구조)

  • Jeong, Chang-Sung;Jeong, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.647-650
    • /
    • 1988
  • This paper proposes and sketches out a new parallel architecture of transputer-based pyramidal parallel array computer (TPPAC) used to process computationally intensive problems for geometric processing applications such as computer vision, image processing etc. It explores how efficiently the pyramid computer architecture is designed using transputer chips, and poses a new interconnection scheme for TPPAC without using additional transputers.

  • PDF

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

TELE-OPERATIVE SYSTEM FOR BIOPRODUCTION - REMOTE LOCAL IMAGE PROCESSING FOR OBJECT IDENTIFICATION -

  • Kim, S. C.;H. Hwang;J. E. Son;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.300-306
    • /
    • 2000
  • This paper introduces a new concept of automation for bio-production with tele-operative system. The proposed system showed practical and feasible way of automation for the volatile bio-production process. Based on the proposition, recognition of the job environment with object identification was performed using computer vision system. A man-machine interactive hybrid decision-making, which utilized a concept of tele-operation was proposed to overcome limitations of the capability of computer in image processing and feature extraction from the complex environment image. Identifying watermelons from the outdoor scene of the cultivation field was selected to realize the proposed concept. Identifying watermelon from the camera image of the outdoor cultivation field is very difficult because of the ambiguity among stems, leaves, shades, and especially fruits covered partly by leaves or stems. The analog signal of the outdoor image was captured and transmitted wireless to the host computer by R.F module. The localized window was formed from the outdoor image by pointing to the touch screen. And then a sequence of algorithms to identify the location and size of the watermelon was performed with the local window image. The effect of the light reflectance of fruits, stems, ground, and leaves were also investigated.

  • PDF

Accuracy Analysis of Construction Worker's Protective Equipment Detection Using Computer Vision Technology (컴퓨터 비전 기술을 이용한 건설 작업자 보호구 검출 정확도 분석)

  • Kang, Sungwon;Lee, Kiseok;Yoo, Wi Sung;Shin, Yoonseok;Lee, Myungdo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • According to the 2020 industrial accident reports of the Ministry of Employment and Labor, the number of fatal accidents in the construction industry over the past 5 years has been higher than in other industries. Of these more than 50% of fatal accidents are initially caused by fall accidents. The central government is intensively managing falling/jamming protection device and the use of personal protective equipment to eradicate the inappropriate factors disrupting safety at construction sites. In addition, although efforts have been made to prevent safety accidents with the proposal of the Special Act on Construction Safety, fatalities on construction sites are constantly occurring. Therefore, this study developed a model that automatically detects the wearing state of the worker's safety helmet and belt using computer vision technology. In considerations of conditions occurring at construction sites, we suggest an optimization method, which has been verified in terms of the accuracy and operation speed of the proposed model. As a result, it is possible to improve the efficiency of inspection and patrol by construction site managers, which is expected to contribute to reinforcing competency of safety management.

A Study on Image Annotation Automation Process using SHAP for Defect Detection (SHAP를 이용한 이미지 어노테이션 자동화 프로세스 연구)

  • Jin Hyeong Jung;Hyun Su Sim;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.76-83
    • /
    • 2023
  • Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.

A study on the development of gas measurement system in shoes mold and automatic gas-vent exchange machine with computer vision (신발금형의 가스 배출량 측정 장치와 영상정보를 이용한 가스벤트 자동 교환 시스템의 개발)

  • Kwon, Jang-Woo;Hong, Jun-Eui;Yoon, Dong-Eop;Choi, Heung-Ho;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.20-27
    • /
    • 2006
  • This paper presents a gas measurement system for deciding hole positions on a PU middle-sole mold from computed gas amount. The optimal number of holes and their positions on the shoe mold are decided from statistical experiment results to overcome the problem of excessive expenses in gas vent exchange. This paper also describes a gas vent exchange mechanism using computer vision system. The gas hole detecting process is based on computer vision algorithms represented as a simple Pattern Matching. The experimental result showed us that the system was useful to calculate the number of holes and their positions on the shoes mold.