• Title/Summary/Keyword: Computer vision technology

Search Result 666, Processing Time 0.024 seconds

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

Evaluation of Feature Extraction and Matching Algorithms for the use of Mobile Application (모바일 애플리케이션을 위한 특징점 검출 연산자의 비교 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Mobile devices like smartphones and tablets are becoming increasingly capable in terms of processing power. Although they are already used in computer vision, no comparable measurement experiments of the popular feature extraction algorithm have been made yet. That is, local feature descriptors are widely used in many computer vision applications, and recently various methods have been proposed. While there are many evaluations have focused on various aspects of local features, matching accuracy, however there are no comparisons considering on speed trade-offs of recent descriptors such as ORB, FAST and BRISK. In this paper, we try to provide a performance evaluation of feature descriptors, and compare their matching precision and speed in KD-Tree setup with efficient computation of Hamming distance. The experimental results show that the recently proposed real valued descriptors such as ORB and FAST outperform state-of-the-art descriptors such SIFT and SURF in both, speed-up efficiency and precision/recall.

Development and Validation of a Vision-Based Needling Training System for Acupuncture on a Phantom Model

  • Trong Hieu Luu;Hoang-Long Cao;Duy Duc Pham;Le Trung Chanh Tran;Tom Verstraten
    • Journal of Acupuncture Research
    • /
    • v.40 no.1
    • /
    • pp.44-52
    • /
    • 2023
  • Background: Previous studies have investigated technology-aided needling training systems for acupuncture on phantom models using various measurement techniques. In this study, we developed and validated a vision-based needling training system (noncontact measurement) and compared its training effectiveness with that of the traditional training method. Methods: Needle displacements during manipulation were analyzed using OpenCV to derive three parameters, i.e., needle insertion speed, needle insertion angle (needle tip direction), and needle insertion length. The system was validated in a laboratory setting and a needling training course. The performances of the novices (students) before and after training were compared with the experts. The technology-aided training method was also compared with the traditional training method. Results: Before the training, a significant difference in needle insertion speed was found between experts and novices. After the training, the novices approached the speed of the experts. Both training methods could improve the insertion speed of the novices after 10 training sessions. However, the technology-aided training group already showed improvement after five training sessions. Students and teachers showed positive attitudes toward the system. Conclusion: The results suggest that the technology-aided method using computer vision has similar training effectiveness to the traditional one and can potentially be used to speed up needling training.

Lane Detection for Parking Violation Assessments

  • Kim, A-Ram;Rhee, Sang-Yong;Jang, Hyeon-Woong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this study, we propose a method to regulate parking violations using computer vision technology. A still color image of the parked vehicle under question is obtained by a camera mounted on enforcement vehicles. The acquired image is preprocessed through a morphological algorithm and binarized. The vehicle's shadows are detected from the binarized image, and lanes are identified using the information from the yellow parking lines that are drawn on the load. Whether parking is illegal is determined by the conformity of the lanes and the vehicle's shadow.

Development of Input Device for Positioning of Multiple DOFs (다자유도 위치설정을 위한 입력장치의 개발)

  • Kim, Dae-Sung;Kim, Jin-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.851-858
    • /
    • 2009
  • In this study, we propose a new input device using vision technology for positioning of multiple DOFs. The input device is composed of multiple Tags on a transparent table and a vision camera below the table. Vision camera detects LEDs at the bottom of each Tag to derive information of the ID, position and orientation. The information are used to determine position and orientation of remote target DOFs. Our developed approach is very reliable and effective, especially when the corresponding DOFs are from many independent individuals. We show an application example with a SCARA robot to prove the flexibility and extendability.

Further Development of Vision-Based Strain Measurement Methods to Verify Finite Element Analyses

  • Kim, Hyung jong;Lee, Daeyong
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • One of the preferred methods that can be used to verify the results of finite element analysis is to measure surface strains of the deformed part for purpose of direct comparison with simulation results. Instead of using the usual manual method the vision-based measurement method is capable of determining surface geometry and strain from the deformed grid pattern automatically with the help of a computer. To obtain strain distribution over an area, the coordinates of such a surface grid are determined from the multiple video images by applying the photogrammetry principle. Methods to improve the overall accuracy of the vision-based strain measurement system are explored and the possible accuracies that can be attained by such a measurement method are discussed. A major emphasis is placed on the initial grid application method its accuracy and ease of subsequent image processing. Finite element analyses of limiting dome height(LDH) test are carried out and the results of them are compared with exsperimen-tal data.

  • PDF

A Fast Vision-based Head Tracking Method for Interactive Stereoscopic Viewing

  • Putpuek, Narongsak;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1102-1105
    • /
    • 2004
  • In this paper, the problem of a viewer's head tracking in a desktop-based interactive stereoscopic display system is considered. A fast and low-cost approach to the problem is important for such a computing environment. The system under consideration utilizes a shuttle glass for stereoscopic display. The proposed method makes use of an image taken from a single low-cost video camera. By using a simple feature extraction algorithm, the obtained points corresponding to the image of the user-worn shuttle glass are used to estimate the glass center, its local 'yaw' angle, as measured with respect to the glass center, and its global 'yaw' angle as measured with respect to the camera location. With these estimations, the stereoscopic image synthetic program utilizes those values to interactively adjust the two-view stereoscopic image pair as displayed on a computer screen. The adjustment is carried out such that the so-obtained stereoscopic picture, when viewed from a current user position, provides a close-to-real perspective and depth perception. However, because the algorithm and device used are designed for fast computation, the estimation is typically not precise enough to provide a flicker-free interactive viewing. An error concealment method is thus proposed to alleviate the problem. This concealment method should be sufficient for applications that do not require a high degree of visual realism and interaction.

  • PDF

Development of Bolt Tap Shape Inspection System Using Computer Vision Technology (컴퓨터 비전 기술을 이용한 볼트 탭 형상 검사 시스템 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.303-309
    • /
    • 2018
  • Computer vision technology is a component inspection to obtain a video image from the camera to the machine to perform the capabilities of the human eye with a field of artificial intelligence, and then analyzed by the algorithm to determine to determine the good and bad of production parts It is widely applied. Shape inspection method was used as how to identify the location of the start point and the end point of the search range, measure the height to the line scan method, in such a manner as to determine the presence or absence of the bolt tabs average brightness of the inspection area in a circular scan type value And the degree of similarity was calculated. The total time it takes to test in the test performance tests of two types of bolts tab enables test 300 min, and demonstrated the accuracy and efficiency of the inspection on the production line represented a complete inspection accuracy.

A Study on Scratch Detection of Semiconductor Package using Mask Image (마스크 이미지를 이용한 반도체 패키지 스크래치 검출 연구)

  • Lee, Tae-Hi;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.43-48
    • /
    • 2017
  • Semiconductors are leading the development of industrial technology, leading to miniaturization and weight reduction of electronic products as a leading technology, we are dragging the electronic industry market Especially, the semiconductor manufacturing process is composed of highly accurate and complicated processes, and effective production is required Recently, a vision system combining a computer and a camera is utilized for defect detection In addition, the demand for a system for measuring the shape of a fine pattern processed by a special process is rapidly increasing. In this paper, we propose a vision algorithm using mask image to detect scratch defect of semiconductor pockage. When applied to the manufacturing process of semiconductor packages via the proposed system, it is expected that production management can be facilitated, and efficiency of production will be enhanced by failure judgment of high-speed packages.

Smart Vision Sensor for Satellite Video Surveillance Sensor Network (위성 영상감시 센서망을 위한 스마트 비젼 센서)

  • Kim, Won-Ho;Im, Jae-Yoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, satellite communication based video surveillance system that consisted of ultra-small aperture terminals with small-size smart vision sensor is proposed. The events such as forest fire, smoke, intruder movement are detected automatically in field and false alarms are minimized by using intelligent and high-reliable video analysis algorithms. The smart vision sensor is necessary to achieve high-confidence, high hardware endurance, seamless communication and easy maintenance requirements. To satisfy these requirements, real-time digital signal processor, camera module and satellite transceiver are integrated as a smart vision sensor-based ultra-small aperture terminal. Also, high-performance video analysis and image coding algorithms are embedded. The video analysis functions and performances were verified and confirmed practicality through computer simulation and vision sensor prototype test.