• Title/Summary/Keyword: Computer image analysis

Search Result 1,468, Processing Time 0.032 seconds

Associative Interactive play Contents for Infant Imagination

  • Jang, Eun-Jung;Lee, Chankyu;Lim, Chan
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.126-132
    • /
    • 2019
  • Creative thinking appears even before it is expressed in language, and its existence is revealed through emotion, intuition, image and body feeling before logic or linguistics rules work. In this study, Lego is intended to present experimental child interactive content that is applied with a computer vision based on image processing techniques. In the case of infants, the main purpose of this content is the development of hand muscles and the ability to implement imagination. The purpose of the analysis algorithm of the OpenCV library and the image processing using the 'VVVV' that is implemented as a 'Node' in the midst of perceptual changes in image processing technology that are representative of object recognition, and the objective is to use a webcam to film, recognize, derive results that match the analysis and produce interactive content that is completed by the user participating. Research shows what Lego children have made, and children can create things themselves and develop creativity. Furthermore, we expect to be able to infer a diverse and individualistic person's thinking based on more data.

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

Analysis of Image Processing Speed Using Multi-Threads (멀티 스레드를 이용한 영상 처리 속도 분석)

  • Hur Tai-sung;Jang Hyeong-kyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.471-472
    • /
    • 2023
  • 본 논문에서는 멀티 쓰레드를 이용하여 UI에 영상을 표현할 때, 걸리는 시간 및 적정 사용 방법을 연구하였다. 영상처리는 오픈 API인 OpenCV를 사용하여 처리하였으며, 1~4개의 스레드로 영상을 다운로드하는 시간부터 GUI에 보여주는 시간까지를 계산하는 기능을 구현하여 영상을 다운로드하고, GUI에 넣어주어야 할 때 스레드의 개수가 퍼포먼스에 관여하는 처리속도를 알아볼 수 있다.

  • PDF

Analysis of Affine Motion Compensation for Light Field Image Compression (라이트필드 영상 압축을 위한 Affine 움직임 보상 분석)

  • Huu, Thuc Nguyen;Duong, Vinh Van;Xu, Motong;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.216-217
    • /
    • 2019
  • Light Field (LF) image can be understood as a set of images captured by a multi-view camera array at the same time. The changes among views can be modeled by a general motion model such as affine motion model. In this paper, we study the impact of affine coding tool of Versatile Video Coding (VVC) on LF image compression. Our experimental results show a small contribution by affine coding tool in overall LF image compression of roughly 0.2% - 0.4%.

  • PDF

A Graph Model and Analysis Algorithm for cDNA Microarray Image (cDNA 마이크로어레이 이미지를 위한 그래프 모델과 분석 알고리즘)

  • Jung, Ho-Youl;Hwang, Mi-Nyeong;Yu, Young-Jung;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.411-421
    • /
    • 2002
  • In this Paper we propose a new Image analysis algorithm for microarray processing and a method to locate the position of the grid cell using the topology of the grid spots. Microarray is a device which enables a parallel experiment of 10 to 100 thousands of test genes in order to measure the gene expression. Because of the huge data obtained by a experiment automated image analysis is needed. The final output of this microarray experiment is a set of 16-bit gray level image files which consist of grid-structured spots. In this paper we propose one algorithm which located the address of spots (spot indices) using graph structure from image data and a method which determines the precise location and shape of each spot by measuring the inclination of grid structure. Several experiments are given from real data sets.

Smart Rectification on Satellite images

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • The mainly used technique to rectify satellite images with distortion is to develop a mathematical relationship between the pixel coordinates on the image and the corresponding points on the ground. By defining the relationship between two coordinate systems, a polynomial model is designed and various linear transformations are used. These GCP based geometric correction has performed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The highly variant height of region is resampled with distortion in the rectified image. To solve this problem this paper proposed the TIN-based rectification on a satellite image. The TIN based rectification is good to correct local distortion, but insufficient to reflect overall structure of one scene. So, this paper shows the experimental result and the analysis of each rectification model. It also describes the relationship GCP distribution and rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

  • PDF

Single Image Dehazing: An Analysis on Generative Adversarial Network

  • Amina Khatun;Mohammad Reduanul Haque;Rabeya Basri;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.136-142
    • /
    • 2024
  • Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.

Reversible Sub-Feature Retrieval: Toward Robust Coverless Image Steganography for Geometric Attacks Resistance

  • Liu, Qiang;Xiang, Xuyu;Qin, Jiaohua;Tan, Yun;Zhang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1078-1099
    • /
    • 2021
  • Traditional image steganography hides secret information by embedding, which inevitably leaves modification traces and is easy to be detected by steganography analysis tools. Since coverless steganography can effectively resist steganalysis, it has become a hotspot in information hiding research recently. Most coverless image steganography (CIS) methods are based on mapping rules, which not only exposes the vulnerability to geometric attacks, but also are less secure due to the revelation of mapping rules. To address the above issues, we introduced camouflage images for steganography instead of directly sending stego-image, which further improves the security performance and information hiding ability of steganography scheme. In particular, based on the different sub-features of stego-image and potential camouflage images, we try to find a larger similarity between them so as to achieve the reversible steganography. Specifically, based on the existing CIS mapping algorithm, we first can establish the correlation between stego-image and secret information and then transmit the camouflage images, which are obtained by reversible sub-feature retrieval algorithm. The received camouflage image can be used to reverse retrieve the stego-image in a public image database. Finally, we can use the same mapping rules to restore secret information. Extensive experimental results demonstrate the better robustness and security of the proposed approach in comparison to state-of-art CIS methods, especially in the robustness of geometric attacks.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

A Study on the Image Analysis used by Color Distribution (색상분포에 대한 이미지 분석에 관한 연구)

  • Park, Hyeon-Geun;Lee, Hee-Suk;Jang, Il-Ki;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.69-72
    • /
    • 2012
  • 영상처리 기법을 이용한 이미지 인식에 관한 콘텐츠들은 다양한 알고리즘을 사용하고 있다. 영상처리 기법 중 이미지 인식 기법에는 대표적으로 PCA(Principal Component Analysis)알고리즘이 있으며, 이 알고리즘에 적용된 대표적인 콘텐츠로 얼굴 문자인식이 있다. 이 알고리즘은 정확성을 위하여 학습을 통한 영상의 저장과 인식을 통한 복잡한 알고리즘을 사용한다. 복잡한 알고리즘의 사용으로 간단한 이미지 인식 콘텐츠의 경우 시스템 처리속도에 영향을 줄 수 있다. 따라서 이 논문에서는 색상의 분포를 통하여 그 수치를 이용한 이미지를 분석한 실험을 통하여 간단한 이미지인식 시스템을 위한 알고리즘을 제시하고, 이 알고리즘을 통해서 얻을 수 있는 장 단점을 분석하였다.

  • PDF