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Abstract 

 

This article presents a reformulation of the Grey Edge framework for colour constancy. Colour 

constancy is the ability of a visual system to perceive objects' colours independently of their 

scenes' illuminants. Colour constancy algorithms try to estimate the colour of an illuminant 

from image values. This estimation can later be used to correct the image as though it were 

taken under a white illuminant. The modification presented allows the framework to 

incorporate image-specific filters instead of the commonly used edge detectors. A colour 

constancy algorithm is proposed using PCA and FastICA linear component analyses methods 

for the construction of such filters. The results show that the proposed method improves the 

accuracies of the Grey Edge framework algorithms whilst on the other hand, achieving 

comparable accuracies with the state-of-the-art methods, but improving their time efficiencies. 
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1. Introduction 

Colour constancy is the ability to perceive the colours of observed objects invariant with 

respect to the colours of the scenes' illuminants [1]. Such an ability would be very useful for 

computer vision and image analyses (e.g., for colour-based object detection and tracking, and 

surface colour analysis). Colour constancy algorithms use image colour values for estimating 

the colour of the illuminant. Due to the difficulty of estimating the illuminant for each image 

pixel (e.g. [2]) most algorithms assume that the scene contains uniform illuminant [1].  

Based on our research experiences, three basic types of estimation mechanism can be 

identified. The first type exploits the physical properties of light and surface interactions. Most 

of such algorithms exploit the dichromatic model of image formation (e.g. [3], [4]). They 

estimate the illuminant by identifying specular surfaces’ reflectances. The second type 

exploits the statistical regularities of image features. These features include raw pixel values or 

spatially filtered values, observed image colour gamuts or high-level semantic features. This 

type also includes various biologically-inspired algorithms [2]. The third type combines or 

selects from individual algorithms based on image classification, e.g. [5], [6]. Such algorithms 

only estimate the illuminant indirectly. An overview and comparison of recent algorithms can 

be found in [1]. Our work focused on statistically-based algorithms, that do not depend on 

certain physical phenomena and many of them are also computationally efficient.  

An important advance in statistically-based algorithms has been the Grey Edge framework 

described in [7]. It has introduced the usages of spatial image derivatives for colour constancy. 

This has then inspired several further improvements, e.g. [8], [9], [10], [11]. A likely 

explanation for their success is the de-correlating effects of the derivatives. Thus, large 

uniform surfaces have less effect on the estimation, which is a well-known problem of simple 

pixel-based algorithms.  

Existing methods rely on predefined linear filters for spatially de-correlating image data. This 

article proposes the use of de-correlating linear filters adjusted to individual image data. 

Firstly, image samples are extracted and pre-processed. These samples are then analysed in 

order to find spatial filters based on image content. The filters are used together with the Grey 

Edge framework. This framework was selected for its simplicity and efficiency.  

This paper is organised as follows. In Section 2, the Grey Edge framework introduced by [7] is 

reformulated to accommodate image-specific filters. The construction of filters using image 

component analysis is presented in Section 3. Section 4 describes the experiment used to 

validate the performance of the proposed method, followed by comparisons of the obtained 

results with the results of other algorithms. Section 5 discusses and compares the results. 

2. Reformulation of Grey Edge framework 

In this section the Grey Edge (GE) framework has been reformulated to accommodate 

arbitrary linear filters. The GE framework [7] estimates the illuminant             as: 
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where       is the image value at spatial coordinate   for colour channel  . The superscript   

denotes a smoothing operation and   the order of the applied spatial derivative. The       

denotes the Frobenius norm. The Minkowski norm with parameter   over all image points 

calculates the illuminant estimate   
     

 multiplied by an arbitrary factor  . The final estimate 

of illuminant colour         is the normalised value of           . 

In practice, image smoothing and derivation are combined through convolution of the image 

with orthogonal kernels of spatially-derived Gaussian functions. A colour image        is 

first split into three colour channel images        ,        , and        , which are then 

convolved separately with a kernel    as: 

   
                        (2) 

   
where   denotes convolution. It should be stressed that the spatial vector   was expanded into 

its coordinates      . Each derivative is calculated using its corresponding kernel. 

By using the above-mentioned derivative estimation, Eq. (1) for illuminant estimation can be 

rewritten as a convolution framework (CFW) for illumination estimation as: 
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where     denotes the absolute value. The convoluted data is combined using a vector p-norm 

(parameter  ) over the    different kernels at each position. When    , the results equal the 

Frobenious norm used in Eq. (1). A diagram of this framework is shown in Fig. 1. The input 

image on the right is convolved with the selected kernels        . A p-norm combined image 

is shown on the right. The p and m norms are denoted as      and     , respectively.  

The     first order derivative kernels are used in order to calculate the first-order Grey 

Edge using the CFW. The     second order derivative kernels are used in order to calculate 

the second-order Grey Edge. Only an optional smoothing kernel should be used in order to 

calculate Grey World Assumption. 

One benefit of this modified framework based on convolution is that the general Gaussian 

derivative kernels can be replaced with image-specific kernels. These kernels can be designed 

to find spatially decorrelated or independent values within a specific image. 

3. Proposed method 

This section describes the method for constructing image-specific kernels, which is the main 

contribution of this paper. These kernels are applied afterwards within a reformulated GE 

framework (see Section 2) for an estimated calculation of the illuminant. 

A diagram of the proposed method is shown in Fig. 2. Firstly, the samples are extracted from 

the image and preprocessed. These samples are then analysed using either PCA or FastICA 

methods [12] resulting in linear image components and estimators. The estimators are 

transformed into filter kernels to be used within CFW (see the left side in Fig. 2). The results 

can also be approximated using the extracted image samples (the right side in Fig. 2). 
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Large images are first scaled down to a manageable size. Sampling of large images would 

result in either too big or too many samples. Recent work [10] has shown that image scaling 

can also speed up illumination estimation without degrading its accuracy. 

A sampling window of fixed size    and with fixed sampling step    is selected to traverse 

the image. At each position   samples           are extracted, where       denote the 

position inside the window. The index   is the sequential number of each sample. Samples are 

discarded that contain saturated or otherwise unwanted elements. Let the total number of valid 

sampling positions be denoted as   then the total number of samples is     . 

Each extracted sample is preprocessed by subtracting the mean and normalised by the standard 

deviation calculated across all samples. The preprocessed sample             is calculated as: 

   

             
                 

         
  (4) 

   
where         and         are the estimated mean and standard deviation at position       

inside the window, respectively, whilst   (e.g.     ) is a small positive constant.  

The preprocessed samples are then analysed using PCA or FastICA analysis [12]. Both 

methods estimate a linear model for the extracted samples as: 

   

                

   

                    (5) 

   
Values           are descriptors of             and         are estimators. The estimators in  

Eq. (5) are traversed backwards so that they can be used as convolution kernels in Eq. (2). 

When          and         are estimated using PCA, the values           are spatially 

non-correlated for different  . On the other hand, when           and         are estimated 

using FastICA, then descriptors           are also spatially independent [12]. 

The estimators are the first   principal components for the PCA method. The parameter   is 

the number of independent components to be estimated for the FastICA method. 

Similar results can be achieved by using only the descriptors         of image samples 

         . These are calculated as: 

   

                                

   

  (6) 

Fig. 1. Diagram of the reformulated convolution-based GE framework using filter kernels. 
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The illuminant is then estimated by summing over all samples N instead of all image positions 

in Eq. (3). If the sampling window step    equals  , then this equation equals Eq. (2). The 

difference increases as the window step gets larger. 

4. Experiment and results 

The error between the estimated illuminant      and the ground truth illuminant     was 

calculated using a well-known angular error defined as [13]: 

   

           
    

       
 

   

      

   (7) 

   
The angular error is measured in degrees. Reporting results follows an established practice 

from the literature (e.g. [13]). The results are summarised using the mean, median, and trimean 

errors. The obtained results were compared either with the published results from [14] or with 

the results of available implementations, where the results were unavailable. 

4.1 Colour checker dataset 

The proposed method was tested on a dataset of natural images taken by P. Gehler et al. [15], 

preprocessed and made available by L. Shi et al. [16]. This will now be referred to as the 

GehlerShi dataset. This dataset contains     images. Each image contains the Macbeth colour 

checker card used to extract ground-truth illuminant values. The area containing the card was 

masked out during the experiments along with any pixels having values greater than     of 

the maximal possible pixel value. This threshold was determined by observing the number of 

pixels with the exact maximal image value. Three splits defined by the original author [15] 

were used for cross-validation. The dataset also contains labels for indoor and outdoor image 

classifications (see [15]). These labels enable detailed analyses of results with respect to 

indoor or outdoor scene classifications. 

Fig. 2. Diagram of the proposed method with image sampling, sample analysis, and estimation. 
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A slightly different preprocessing of this dataset was done by S. E. Lynch et al. [17]. This will 

be referred to as the GehlerLynch dataset. The images were converted from cameras to a linear 

sRGB colour space. Only the 482 images were retained in this dataset. Detailed information 

can be found in [17]. The same splits as defined for the original dataset were applied. 

4.2 Parameter tuning 

The proposed method has   parameters, namely image scaling factor  , sampling window 

size   , sampling window step   , number of kernels  , and two norm parameters   and  . 

In order to tune the parameters’, an exhaustive search over selected values was conducted, 

using cross-validation training sets. The selected values are gathered in Table 1. The values 

were selected based on experience from our previous experiments.  

Table 1. Parameters, values used in the exhaustive search and the best values found for each dataset, 

each method and each split (displayed from left to right). 

  GehlerShi GehlerLynch 

Parameter A set of values                 

            2 2 2 2 2 2 8 2 2 4 2 2 

                        10 10 10 10 12 10 12 10 14 10 14 14 

                       16 12 12 24 16 8 24 24 24 24 16 16 

   [                       0.5 0.5 0.5 2 2 1 0.5 1 1 3     

   [                       2 2 2 2 2 2 2 3 3 2 3 3 

              

The number of samples extracted from an image is mostly controlled by window-step   . As 

long as the number of samples is fairly large (       ) the exact selection of    has little 

effect on the results of the estimation. For this exhaustive search, the window-step    was 

arbitrarily chosen as half of window size   . 

A scaled image with    -times the width and    -times the height of the original image is 

constructed by using a scaling parameter  . Scaling the image by a factor of     has a similar 

effect as changing the size of the sampling window by a factor  . Using a smaller image 

produces similar results but requires less memory space and processing time. 

The illuminant was estimated with image samples by using Eq. (6). For each training split the 

parameters with the minimal mean angular error were chosen after the exhaustive search.  

The mean angular error as a function of an observed parameter is studied in order to obtain 

some insight into the importance of specific parameters. The unobserved parameters are set to 

their optimal values. Charts for the FastICA method on GehlerShi dataset are shown in Fig. 3. 

The sampling window size    and step    have little effect (see chart (a)). Increasing the 

number of components   slowly improves the mean angular error (see chart (c)) but levels off 

soon. In addition, the parameter   does not have a noticeable effect on the mean angular error 

(see chart (b)). The parameter  , however, has a noticeable local minimum at     for all three 

splits (see chart (d)). Other charts were similar and, are thus, left out. 

4.3 Results 

The experimental results are summarised in the following tables. The proposed method is 

labelled as        or        for PCA and FastICA methods' analyses, respectively. The 

illuminant was estimated using Eq. (6). Labels    ,     and     denote the methods' 
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General Grey World, and the first and second-order Grey Edges, respectively. These methods 

are described by the original GE framework. The parameters for these methods were chosen 

using cross validation, as reported by [7]. The results are also compared with the 

SpatioSpectral statistics (         ) method proposed by [9] and the derivative methods 

             ,              proposed by [10]. The last two methods are Photometric 

edge weighting (      ) by [8] and the Zeta Image method (         ) by [4]. 

Firstly, the selected algorithms were compared in terms of used processing time (see Table 2). 

The processing times of using Eq. (2) based on image filtering and using Eq. (6) based on 

image samples are both reported. The algorithms were implemented in Matlab using the 

original authors’ implementations where available. The parameters of the proposed methods 

were    ,      ,     ,     ,    ,    , whilst    ,    , and     

methods used    ,    . The parameters for        were     and    . The 

measurements were done on a computer system with an Intel Core i5 650 processor having a 

3.2 GHz system clock and 8GB RAM. It can be noticed that        using Eq. (6) is 

approximately 5 times slower than the fastest but one of the simpler methods (         ), 

and about 5 times faster than the sophisticated but slowest method (         ).  

Table 2. Mean run times with standard deviations for compared algorithms implemented in Matlab. 

Times were measured by processing all images from the GehlerLynch dataset scaled with    . 

Algorithm Mean run time (s)  Algorithm Mean run time (s) 

                            (Eq. (6))           

                                       

                                         

                                   

                      (Eq. (2))           

        (Eq. (6))                   (Eq. (2))           

     

In the sequel, the selected algorithms were compared with respect to the angular error of the 

estimated illuminants. Table 3 shows the obtained results on the GehlerShi dataset. The 

results from the           implementation differed slightly from the results reported in [4]. 

The results of              ,              were omitted, as they were very similar to 

          method. The results obtained on the GehlerLynch dataset are collated in Table 4. 

The parameters for the methods were determined using predefined cross-validation sets.  

The label          denotes the error of the illuminant, estimated using the mean ground truth 

illuminant calculated over all images within a dataset. The            baseline error uses a 

neutral RGB illuminant estimate, i.e. equal values for all colour channels. The white point of 

Fig. 3. Effect of selected parameter on the mean angular error using the FastICA method on the 

GehlerShi dataset. Unobserved parameters are set to optimal values. 
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the camera colour space of images in the GehlerShi dataset does not correspond to the neutral 

value in RGB space. This is reflected in the much larger errors of the           . The tables 

also report the results for indoor and outdoor image subsets. 

Table 3. Mean, median and trimean angular errors for the selected algorithms on the GehlerShi dataset. 

The best result in each category is marked.  

Algorithm 
all images (568) indoor images (246) outdoor images (322) 

mean median trimean mean median trimean mean median trimean 

                                                        

                                             

                                        

                                        

                                        

                                           

                                              

                                              

                                           

                                           

          

Each pair of algorithms was further tested using the Wilcoxon signed rank test as suggested in 

[10]. All tests were made at 0.05 significance level. The following conclusions were drawn.  

On the entire GehlerShi dataset the illuminant estimations obtained by        were 

statistically significantly better than those of    ,    ,     and       , whilst any 

differences between estimations obtained by           and our algorithm were statistically 

insignificant. The estimations obtained by        were statistically superior than those of 

   ,    ,    ,       ,           and       . The results of           were 

statistically significantly better than those of all other algorithms. 

Table 4. Mean, median and trimean angular errors for the selected algorithms on the GehlerLynch 

dataset. The best result in each category is marked.  

Algorithm 
all images (482) indoor images (175) outdoor images (307) 

mean median trimean mean median trimean mean median trimean 

                                                  

                                             

                                        

                                        

                                        

                                           

                                              

                                              

                                           

                                           

 

On the GehlerLynch dataset the accuracy of        was insignificantly different than    , 

   , and    , whereas        was statistically significantly better than    ,    ,    , 
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          and       . Estimations obtained by        were statistically equal to 

       results. The illuminant estimations of           were statistically significantly 

better than estimations of other compared algorithms. The          ,        and        

illuminant estimations for the indoor images for both datasets did not differ statistically. 

As noted in [13], the just noticeable perceptual difference between the two algorithms is 6% 

difference between their angular errors. Using this criterion to compare algorithms, the 

       was noticeably better than          for 39.1% and there were no noticeable 

differences for 10.6% of the images in the GehlerShi dataset. The        was better than 

         or there were no noticeable differences for 46.1% of the images within the 

GehlerLynch dataset. 

         was indeed statistically the more accurate but the above analysis pointed out that 

our method demonstrates a comparable success, especially in the case of indoor scenes' images; 

on the other hand, our method outperforms          by around five times in terms of the 

time complexity. Our method can therefore be a suitable replacement for the          

method in cases where the time complexity is the crucial factor. 

Examples of the image-specific kernels constructed by PCA and FastICA methods for two 

images are shown in Fig. 4. 

5. Discussion and conclusion 

A colour constancy algorithm was proposed that extends the GE framework. The generic 

convolution kernels for GE were replaced in order to improve the spatial decorrelation with 

image-specific kernels constructed by using either PCA or FastICA analyses methods. The 

experimental evaluation showed this approach improved illuminant estimation compared to 

other GE framework methods and is comparable to state-of-the-art methods. 

The overall results of the presented method were superior compared to the results of GE 

framework methods on both datasets, and comparable (in some respects slightly worse) to the 

results of the           method. A recently published colour constancy method [11] reported 

far better results. However, its authors have not made the code of their algorithm publicly 

available. Despite extensive efforts, it was impossible to replicate the reported results using 

our own implementation of their algorithm. Therefore, this algorithm was excluded for 

comparison. Analyses of both our proposed methods (i.e., based on PCA or FastICA) pointed 

out that neither of the approaches seemed superior (see Table 3 and Table 4, rows        

and       ). Interestingly, using PCA analysis produced slightly better results on the 

GehlerShi dataset, which was contrary to expectations. However, FastICA outperformed PCA 

on the correctly reprocessed GehlerLynch dataset. 

Some interesting observations can be made by looking at the results of indoor and outdoor 

images separately. Looking at the          error points out that most of the illuminant 

variations within the dataset came from indoor images. For the outdoor images the          
error was lower than the error of any colour constancy algorithm used in this study. On the 

indoor images, the proposed methods produced results similar to the           method. 

Our proposed methods improved the results of the basic GE framework methods and are 

comparable in accuracies to the results of the           method. By using an approximation 

of the original GE framework, the presented methods were also up to 4.8 times faster than the 

Spatio Spectral Statistics. It can be concluded that the presented methods present a viable 

compromise between simpler but faster and more sophisticated but slower methods. 
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It can be seen from the examples of image-specific kernels in Fig. 4 that the PCA kernels are 

ranked from lower to higher frequency content. The PCA kernels were also very similar 

between both images. On the other hand, the FastICA kernels could not be ordered easily. 

They also contained more visible variations between images. 

Based on the obtained results, the proposed methods could also be used in combination with 

other GE framework and non GE framework methods. Many existing algorithms assume that 

the illuminant can be separated from the reflectance values based on spatial frequency 

analysis–an example is the Local space average colour method [18]. Based on this assumption, 

weighting schemes based on frequency analyses of filters constructed using the FastICA 

method through the GE framework could be used for improving illuminant estimations. 

The proposed methods analyse achromatic image samples. Coloured image samples can be 

analysed in a similar way. Estimating the illuminant from the results of such analysis would 

not be trivial. The three channel colour values are reduced to single channel descriptors. 

Colour information is contained within the kernels. However, it would help exploit regularities 

between colour channels that are exploited by           and other sophisticated methods.  

In conclusion, an improvement of the GE framework was presented by introducing the usage 

of image-specific kernels. The kernels were constructed using PCA and FastICA methods for 

improving spatial decorrelation. The results show an improvement in Grey Edge and General 

Grey World methods. The results are also comparable with the state-of-the-art colour 

constancy method Spatial Spectral Statistics. 
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