• Title/Summary/Keyword: Computer Algorithms

Search Result 3,841, Processing Time 0.038 seconds

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures (심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.7-14
    • /
    • 2021
  • Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.

CYBERCRIME AS A THREAT TO UKRAINE'S NATIONAL SECURITY

  • Varenia, Nataliia;Avdoshyn, Ihor;Strelbytska, Lilia;Strelbytskyy, Mykola;Palchyk, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.73-83
    • /
    • 2021
  • The information space, the main components of which are information resources, means of information interaction, and information infrastructure, is a sphere of modern social life in which information communications play a leading role. The objective process is the gradual but stable entry of the national information space into the European and world information sphere, in the context of which there is a legitimate question of its protection as one of the components of the national security of Ukraine. However, the implementation of this issue in practice immediately faces the need to respect the rights and fundamental freedoms guaranteed by international regulations and the Constitution of Ukraine, especially in the field of cybersecurity. The peculiarity of the modern economy is related to its informational nature, which affects the sharp increase in cyber incidents in the field of information security, which is widespread and threatening and affects a wide range of private, corporate, and public interests. The problem of forming an effective information security system is exacerbated by the spread of cybercrime as a leading threat to information security both in Ukraine and around the world. The purpose of this study is to analyze the state of cybersecurity and on this basis to identify new areas of the fight against cybercrime in Ukraine. Methods: the study is based on an extensive regulatory framework, which primarily consists of regulatory acts of Ukraine. The main methods were inductions and deductions, generalizations, statistical, comparative, and system-structural analysis, grouping, descriptive statistics, interstate comparisons, and graphical methods. Results. It is noted that a very important component of Ukraine's national security is the concept of "information terrorism", which includes cyberterrorism and media terrorism that will require its introduction into the law. An assessment of the state of cybersecurity in Ukraine is given. Based on the trend analysis, further growth of cybercrimes was predicted, and ABC analysis showed the existence of problems in the field of security of payment systems. Insufficient accounting of cybercrime and the absence in the current legislation of all relevant components of cybersecurity does not allow the definition of a holistic system of counteraction. Therefore, the proposed new legal norms in the field of information security take into account modern research in the field of promising areas of information technology development and the latest algorithms for creating media content.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs. In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP's data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset. The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose a fire detection technology using YOLOv3 and EfficientDet, the most reliable artificial intelligence detection algorithm recently, an alert service that simultaneously transmits four kinds of notifications: text, web, app and e-mail, and an AWS system that links fire detection and notification service. There are two types of our highly accurate fire detection algorithms; the fire detection model based on YOLOv3, which operates locally, used more than 2000 fire data and learned through data augmentation, and the EfficientDet, which operates in the cloud, has conducted transfer learning on the pretrained model. Four types of notification services were established using AWS service and FCM service; in the case of the web, app, and mail, notifications were received immediately after notification transmission, and in the case of the text messaging system through the base station, the delay time was fast enough within one second. We proved the accuracy of our fire detection technology through fire detection experiments using the fire video, and we also measured the time of fire detection and notification service to check detecting time and notification time. Our AI fire detection and notification service system in this paper is expected to be more accurate and faster than past fire detection systems, which will greatly help secure golden time in the event of fire accidents.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.