We consider a possible generalization of nondeterministic finite automata. The goals of this consideration are: to apply some obtained algorithms for various problems of minimization of classical nondeterministic automata; to use such automata for describing practical anytime algorithms for the same problems of minimization; to simplify some proofs for algorithms of simplification for usual nondeterministic automata.
In this paper we present and compare two different spatio-temporal decorrelation learning algorithms for updating the weights of a linear feedforward network with FIR synapses (MIMO FIR filter). Both standard gradient and the natural gradient are employed to derive the spatio-temporal decorrelation algorithms. These two algorithms are applied to multichannel blind deconvolution task and their performance is compared. The rigorous derivation of algorithms and computer simulation results are presented.
Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.
NAND Multi-level cell Flash memory는 한 셀에 여러 bit의 정보를 저장하는 방법으로, 용량 집적도를 더욱 높일수 있는 기술로 각광 받고 있다. 하지만 한 셀당 레벨 수를 올릴 경우, 셀간 간섭 등 여러 물리적 이유들로 인해 오류가 발생하며, 이 주된 오류 방향은 unidirectional 함이 알려져 있다. 기존에는 오류 정정 부호(ECC)등을 이용하여 이를 해결하려 했지만, 우리는 셀간 간섭으로 인한 오류에 포커스를 맞추어, 이 영향을 예측하고 줄여서 오류를 보정하는 새로운 알고리즘들을 제안한다. 이 알고리즘은 기존 오류정정부호 기법들과 별도의 단계로 동시에 적용할 수 있기에 에러 정정능력 향상에 효과적이다. 제안된 알고리즘들을 시뮬레이션을 통하여 성능을 비교하고 효율적인 알고리즘이 무엇인지 알아본다.
본 논문에서는 퍼지추론을 기반으로 얼굴검출 알고리즘을 지능적으로 선택함으로써 개발자들이 전문적인 지식이 없이 얼굴검출 기능을 손쉽게 사용할 수 있는 새로운 기법을 제안한다. 본 논문의 목적은 퍼지추론 기반의 고차원 얼굴검출 시스템을 제시함으로써 사용자들이 컴퓨터비전 이론이나 개별 알고리즘들에 대한 전문적인 지식이 없어도 손쉽게 얼굴검출 기능을 포함하는 시스템을 개발할 수 있도록 지원하는데 있다. 얼굴검출의 방대한 문제영역을 분류하기 위해서 가장 먼저 얼굴검출을 위한 주요한 조건들을 고려하고 정리하였다. 이렇게 정리된 조건들은 개발자들이 주어진 문제를 표현하는데 사용할 수 있도록 정의되었다. 정의된 조건들과 사용 가능한 얼굴검출 알고리즘들은 퍼지추론 규칙을 이용하여 규칙화 되고 퍼지추론 해석기를 구성한다. 개발자들에 의해서 개별 문제의 조건들이 정리되면, 제안된 퍼지해석기가 퍼지추론을 통해 이에 대응되는 문제를 해결하기 위한 최적을 알고리즘들을 찾아내고 구성한다. 제안된 방법의 개념검증을 위해 기존의 알고리즘들과 성능을 비교하였으며 이를 분석하고 우수성과 실용성을 보여준다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.75-82
/
2022
Medical data is one of the data that must be kept in safe containers, far from intrusion, viewing and modification. With the technological developments in hospital systems and the use of cloud computing, it has become necessary to save, encrypt and even hide data from the eyes of attackers. Medical data includes medical images, whether they are x-ray images of patients or others, or even documents that have been saved in the image format. In this review, we review the latest research and the latest tools and algorithms that are used to protect, encrypt and hide these images, and discuss the most important challenges facing these areas.
Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
International Journal of Computer Science & Network Security
/
제23권10호
/
pp.49-56
/
2023
Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3798-3814
/
2022
Social recommendation algorithm can alleviate data sparsity and cold start problems in recommendation system by integrated social information. Among them, matrix-based decomposition algorithms are the most widely used and studied. Such algorithms use dot product operations to calculate the similarity between users and items, which ignores user's potential preferences, reduces algorithms' recommendation accuracy. This deficiency can be avoided by a metric learning-based social recommendation algorithm, which learns the distance between user embedding vectors and item embedding vectors instead of vector dot-product operations. However, previous works provide no theoretical explanation for its plausibility. Moreover, most works focus on the indirect impact of social friends on user's preferences, ignoring the direct impact on user's rating preferences, which is the influence of user rating preferences. To solve these problems, this study proposes a user bias drift social recommendation algorithm based on metric learning (BDML). The main work of this paper is as follows: (1) the process of introducing metric learning in the social recommendation scenario is introduced in the form of equations, and explained the reason why metric learning can replace the click operation; (2) a new user bias is constructed to simultaneously model the impact of social relationships on user's ratings preferences and user's preferences; Experimental results on two datasets show that the BDML algorithm proposed in this study has better recommendation accuracy compared with other comparison algorithms, and will be able to guarantee the recommendation effect in a more sparse dataset.
지식정보화시대가 시작되면서 멘토링은 인재 발굴 및 관리를 위한 효율적인 방법으로 인식되고 있다. 멘토링 효과를 높이기 위한 요소는 여러 가지이다. 그 중 멘토와 멘티를 매칭하는 요소는 멘토링 시스템에서 핵심이라 할 수 있다. 기존 e-멘토링 시스템의 매칭은 대부분 개인 정보를 충분히 활용하지 못하고 관리자에 의해 일괄적으로 처리되는데, 이는 멘토링 효과에 부정적인 영향을 미칠 수 있다. 본 논문에서는 중 고등학생을 대상으로 개인선호도를 입력받아 매칭 항목으로 결정하고 이를 기반으로 가장 적절한 멘토/멘티를 매칭시키는 개인선호도기반의 멘토/멘티 추천 알고리즘을 제안한다. 또한, 본 논문에서는 기존의 알고리즘과 함께 제안한 알고리즘을 정교성, 일치성, 다양성 측면에서 분석하여 제안한 알고리즘의 효율성을 증명한다.
60 GHz 대역에서 multi-gigabit 전송률을 달성하기 위하여 제안된 ECMA 표준은 프리앰블과 데이터 부분으로 구성된 버스트 (burst)를 통하여 데이터 송수신을 수행하며 프리앰블과 데이터 부분에서는 동작 모드에 따라 다양한 변조 방식이 사용된다. 따라서 다양한 변조 방식을 지원할 수 있는 수신 알고리듬의 설계가 필수적이다. 본 논문에서는 ECMA 표준 중 DBPSK (Differential Binary Phase Shift Keying)와 DQPSK (Differential Quadrature Phase Shift Keying) 그리고 OOK (On-Off Keying) 변조 방식을 지원하는 multi-gigabit packet 송수신 시스템을 위한 수신 알고리듬을 설계하였다. 설계된 수신 알고리듬은 동일한 구조 및 동작 방식을 통하여 고려한 모든 변조 방식들을 지원할 수 있을 뿐만 아니라 하드웨어 구현 복잡도가 낮은 장점을 지닌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.