
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

49

Manuscript received October 5, 2023
Manuscript revised October 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.10.7

Computer Architecture Execution Time Optimization Using Swarm in
Machine Learning

Sarah AlBarakati†, Sally AlQarni†, Rehab K. Qarout*† and Kaouther Laabidi††,
1900500@uj.edu.sa, 2200451@uj.edu.sa, rkqarout@uj.edu.sa, Komri@uj.edu.sa

†Department of Computer Science & Artificial Intelligence, University of Jeddah, Saudi Arabia
††Department of Computer Engineering and Networks, University of Jeddah, Saudi Arabia

Summary
Computer architecture serves as a link between application requirements
and underlying technology capabilities such as technical, mathematical,
medical, and business applications' computational and storage demands are
constantly increasing. Machine learning these days grown and used in
many fields and it performed better than traditional computing in
applications that need to be implemented by using mathematical
algorithms. A mathematical algorithm requires more extensive and quicker
calculations, higher computer architecture specification, and takes longer
execution time. Therefore, there is a need to improve the use of computer
hardware such as CPU, memory, etc. optimization has a main role to
reduce the execution time and improve the utilization of computer
recourses. And for the importance of execution time in implementing
machine learning supervised module linear regression, in this paper we
focus on optimizing machine learning algorithms, for this purpose we write
a (Diabetes prediction program) and applying on it a Practical Swarm
Optimization (PSO) to reduce the execution time and improve the
utilization of computer resources. Finally, a massive improvement in
execution time were observed.
Keywords:
computer architecture, Machine learning, optimization, execution
time, PSO, medical.

1. Introduction

Machine learning (ML) recently grown at a special rate,
attracting many researchers and practitioners. It has become
one of the most popular study areas, applying it in many
fields like machine translation, speech recognition, image
recognition, recommendation systems, and others [5]. A
ML model is trained to generate predictions or decisions
without explicit programming in each application by
detecting embedded patterns or relationships in the data.
Particularly in tasks/applications where relationships are
too complicated to analyze using analytical methods, ML
models can perform well [1].

Recently machine learning models, most of which are
deep neural networks (DNNs) and their variants (e.g., multi-
layer perceptron, convolutional neural networks, and
recurrent neural networks) already have high memory and
computational resource requirements. Since people are
searching for better artificial intelligence, there is a trend
toward larger, more expressive, and more complicated
models. With Moore's Law's gains declining, this trend
encourages advancements in computer architecture/systems,

enabling faster and more energy-efficient ML model
implementations Improvements at various levels of system
and architecture designs [2].

Optimization is also regarded as one of the crucial
components of machine learning. Most machine learning
methods work by constructing an optimization model and
learning the parameters in the objective function from the
input data. The effectiveness and efficiency of numerical
optimization algorithms significantly impact the
popularization and implementation of machine- learning
models in the age of massive data.[5] Traditionally,
architectural and system optimizations are performed to
accelerate the execution and enhance the performance of
ML models, it evident that advances in processing
capabilities, such as better use of parallelism, data reuse,
and sparsity, play a role in ML revolutions.

There has recently been evidence of using machine
learning to improve system designs, revealing attractive
potential [2]. While computer architects have been using
GPUs and custom hardware to accelerate the performance
of machine learning algorithms, there have been few
implementations utilizing these algorithms to improve
computer system performance. However, the work that has
been done has yielded very encouraging results [3].
Machine learning's growing popularity, and the desire to
conduct more extensive and quicker calculations, have
prompted the development of hardware accelerators that
can compete with GPUs while using significantly less
energy, particularly for deep convolution networks (CNNs).
There has been limited research using machine learning
algorithms to improve computer performance since
computer architects have focused intensely on specialized
hardware for machine learning [3].

In this paper we implement a Machine learning
algorithm named as (Diabetes prediction program) in
python programming language and it is a linear regression
supervised learning model. We implemented the program,
and the execution time was calculated, then the optimization
algorithm Practical swarm optimization (PSO) has been
merged into the same code, also the execution time was
calculated. By comparing the execution time in two cases,
the result is a huge optimization in reducing the execution

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

50

time while maintaining the same accuracy of the prediction
result.

2. BACKGROUND

A. Computer Architecture

The design of computer systems, including all
subsystems such as the CPU, memory, and I/O systems, is
known as computer architecture. these components are
crucial to the entire system's operation and performance [6].

B. Computer system performance

A computer system's performance relies on both the
architecture and its implementation. It was evident that both
the architecture and implementation must be optimized [6].

C. Machine Learning

Machine learning is the study of feeding data and
information to computers without explicitly programming
them to learn and act like humans [7]. Figure 1 is a
schematic that shows the machine learning process.
Machine learning has been used to solve problems in
different industry domains, including banking and financial
services, insurance, healthcare, and life sciences. Before
beginning to solve any problem using machine learning, it
is necessary to determine whether the problem is
appropriate to use [7].

Figure 1: Machine learning process [7]

D. Machine Learning Methods

Machine learning has two prominent model families:
1) Deep Learning
2) Classical Machine Learning

a. Deep learning (DL) refers to a class of machine
learning (ML) models made up of artificial neural networks
(ANNs). ANNs were inspired by the structure and function
of the human brain. Using various layers, they learn a
hierarchy of parametric features (e.g., fully connected,
ReLU). A technique known as back-propagation is used to
train all parameters. Training a deep learning model incurs
massive costs: they typically need many GPUs for
reasonable runtime, massive, labelled datasets, and
complex hyper-parameter tuning.

b. Classical Machine Learning. ML model families
such as generalized linear models, decision tree models, and
Bayesian models are widely used in many applications that
work with structured data. These model families are
commonly referred to collectively as classical machine
learning.
We also identify three different learning paradigms for the
two families of the ML model above, as shown in figure 2:
• Supervised Learning.
• Unsupervised Learning.
• Reinforcement Learning.

Figure 2: Types of machine learning [7]

The machine learning model that we used in our
experiment in this paper is Supervised learning, and one of
the important types of supervised learning is a linear
regression, as explained below:
• Supervised Learning. In supervised learning,
training data consists of inputs (also known as features) and
output pairs. The goal of the ML model is to learn a
predictive function that takes unseen inputs and predicts the
output value to minimize the discrepancy between the
predicted and actual values corresponding to the unseen
inputs.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

51

1. Linear regression:
Linear regression is One of the most basic and

widely used supervised machine learning methods. It is a
method for performing predictive analysis that is based on
mathematics. Linear regression allows for projections of
continuous/real or mathematical variables. It takes one or
more independent variables and predicts the values of
dependent variables.

• Unsupervised Learning. In unsupervised learning,
training data contains only inputs, not explicit outputs. The
goal of the ML model is to learn a function that can identify
the latent structure of an input. Given an unseen test input,
the use of the trained unsupervised ML model can be seen
to predict the structural characteristics of the input.
• Reinforcement Learning. The purpose of
reinforcement learning methods is to learn a function that
takes input states and produces actions that maximize the
overall cumulative reward (not the immediate rewards as
supervised learning).

E. Optimization and Machine Learning

The heart of machine learning is optimization. Most
machine learning issues reduce optimization problems.
Consider a machine learning analyst working to solve an
issue using some set of data. The modeler formulates the
problem by choosing an appropriate model family and
manipulating the data into a modelling-friendly format. The
model is then trained by solving a core optimization
problem that optimizes the model's variables or parameters
related to the chosen loss function and perhaps some
regularization function. The fundamental optimization
problem may be solved several times during the model
selection and validation process. Through these important
optimization problems, the research area of mathematical
programming intersects with machine learning. On the one
hand, mathematical programming theory defines what
makes a solution optimal – the optimality conditions. On the
other hand, machine learning researchers can use
mathematical programming algorithms to train large
families of models [8].

From the point of view of machine learning, and
optimization algorithm should have the following
properties [8]:
1. Excellent generalization.
2. Scalability to large-scale issues.
3. In terms of execution time and memory requirements, it

must be a good performance in practice.
4. Algorithm implementation should be simple and easy.

5. Exploitation of the structure of the problem
6. Rapid convergence to a model's approximate solution.
7. For the class of machine learning models' robustness and

numerical stability were attempted.

8. Convergence and complexity are theoretically known.

a. Particle Swarm Optimization:

Kennedy proposed swarm modeling to simulate the
social behavior of fish and birds, and Kennedy and Eberhart
presented the optimization algorithm as an optimization
technique in 1995. PSO has particles that represent
candidate solutions to the problem, each particle searches
for the best solution in the search space, and each particle
or candidate solution has a position and velocity. Based on
its inertia, own experience, and knowledge obtained from
other particles in the swarm, a particle adjusts its velocity
and position to discover the best solution to the problem
[13].

The particles update its position and velocity
according to the following Equation, this equation is a built-
in Pyswarm library [13]:

Figure 3. PSO Equation [13]

3. RELATED WORK

Daniel et al. [3], described a method for highlighting
when, why, and how to use machine learning models to
improve system performance, A relevant example
demonstrates the ability of machine learning-based cross
core IPC predictors to enable CPU schedulers to optimize
system throughput. They described a data generation
process for every execution quantum and parameter
engineering. They have evaluated a group of popular
machine learning models, including stochastic gradient
descent based linear regression, decision trees, random

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

52

forests, artificial neural networks, and k-nearest neighbours.
The inner workings of the algorithms, computational and
memory complexities, and a process to fine-tune and
evaluate the models were then discussed. The random forest
narrowly produces the lowest root mean squared error in its
testing predictions after comparing the results of the
predictors. Finally, they discussed how a mechanism such
as a scheduler for heterogeneous systems might use the
predictor to improve overall system performance. In the
future, reinforcement learning could be a worthwhile
alternative to explore when applying machine learning to
improve scheduling.

Lizhong et al. [1] reviewed machine learning in many
individual components, including memory systems, branch
predictors, networks-on-chip, GPUs, system-wide
simulation, and runtime optimization. They analyzed
current practice to highlight useful design strategies and
determine opportunities for future work based on optimized
implementation strategies, appropriate expansions to
existing work, and ambitious long-term potential. These
strategies and techniques, when combined, promise a bright
future for increasingly automated architectural design. They
concluded that model optimization opportunities such as
pruning, and quantization provide comprehensive benefits
by enabling more practical implementation. Similarly, there
are several chances to expand existing work using ever-
more-powerful machine learning models, enabling finer
granularity and system-wide implementation. Finally, ML
can be applied to learn hierarchical or abstract
representations to characterize complete system behaviour
based on both high- and low-level details, enabling it to be
applied to entirely new aspects of architecture. These
extensive opportunities, and yet to be imagined possibilities,
may someday close the loop on highly (or even completely)
automated architectural design.

NAN WU and YUAN XIE. [2] presented a
comprehensive review of work that uses machine learning
for system design, divided into two categories: ML-based
modelling, which includes predicting performance metrics
or other criteria of interest, and ML-based design
methodology, which uses machine learning directly as a
design tool. They discussed existing studies based on their
goal level of the system, which ranged from the circuit level
to the architecture/system level, for ML-based modelling.
They used a bottom-up approach to review current work for
ML-based design methodology, with a focus on
(micro-)architecture design (memory, branch prediction,
NoC), coordination between architecture/system and
workload (data center management, and security, resource
allocation and management), compiler, and design
automation. They provided a future vision of prospects and
directions for applying machine learning to computer
architecture and systems, which might lead to a brighter and
more promising future.

H. Krishnaveni et al. [9] presented the importance of
enhancing resource utilization and improvise the overall
performance of advanced cloud computing applications by
efficient task scheduling. This scheduling is critical for
achieving a high- performance schedule in a heterogeneous-
computing system. Existing scheduling methods such as
Min-Min, Suffrage, and Enhanced Min-Min were solely
concerned with minimizing the makespan and ignored other
factors such as resource utilization and load balancing. The
Execution Time Based Suffrage Method (ETSA) is an
efficient algorithm that considers the parameters makespan
and resource consumption while scheduling activities. It has
been written in Java using the Eclipse IDE, and a set of ETC
matrices are used in testing to assess the suggested approach.
The ETSA outperforms previous algorithms in terms of
timeliness and resource utilization.

Artem M et al. [10] highlighted the complexity and
stochastic features of the process components, and their
runtime, and a solution is proposed that takes these factors
into account. The proposed method in this research
addresses issues at various levels, from a task to a process,
error measurement and the theory behind the estimation
algorithm. The suggested makespan estimation technique
may be readily implemented as a standalone module for a
wide range of schedulers. Combining task estimates into the
overall workflow makespan used a dual stochastic
representation, characteristic/distribution function.They
also proposed workflow reductions, which are operations
on a workflow graph that do not reduce the accuracy of the
estimates but simplify the graph structure, thereby
improving the algorithm's performance. Another
noteworthy aspect of their work is that they include the
described estimation schema into an earlier established
scheduling algorithm, GAHEFT, and use the CLAVIRE
platform to empirically evaluate the enhanced solution's
performance in the natural environment. In all
circumstances, the suggested GAHEFT and eGAHEFT
algorithms outperformed the MinMin algorithm by 30–48
percent, according to the results of the experimental study.
Both estimation approaches were used to analyze all the
obtained outcome schedules. The eGAHEFT performed
worse than GAHEFT, according to quantile estimation. The
EDF estimate approach and real-world testing, on the other
hand, revealed that the eGAHEFT solution was superior to
the GAHEFT solution. Thus, simply by employing a better
method for making span estimate, the efficiency of the
meta-heuristic algorithm was raised by 6.4 percent without
any changes to the meta-heuristic algorithm itself.

Shiliang et al. [11] introduced and summarized
commonly used optimization methods from a machine
learning perspective and their applications in many machine
learning domains. They initially discussed the theoretical
foundations of optimization methods from first-order, high-
order, and derivative-free perspectives and recent research
advance. Then, in the supplemental material, they discussed

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

53

applying optimization algorithms in various machine-
learning scenarios and how to improve their performance.
Finally, they talked about some obstacles and unsolved
issues in machine-learning optimization methods.

Tanash, M et al. [12] designed a supervised machine
learning model and implemented it into the Slurm resource
manager simulator to calculate the number of memory
resources (Memory) needed and it's time to complete the
computation. Different machine learning algorithms are
used in their model. Their objective is to use Slurm to
integrate and test the suggested supervised machine
learning model. They evaluated the performance and
accuracy of their integrated model by using over 10000
tasks from our HPC log files. Their work aims to improve
Slurm's performance by predicting the number of required
jobs memory resources and the time required for each job
to optimize the HPC system's utilization using their
integrated supervised machine learning model. Their results
indicate that their model reduces computational response
times (from five days to ten hours for significant works),
significantly increases HPC system utilization, and
decreases the average waiting time for submitted jobs for
larger jobs.

4. METHODOLOGY

Machine learning is widely utilized in different
fields to address complex issues that are difficult to solve
with traditional computer methods. The goal of machine
learning is to gain knowledge from data. There have been
numerous experiments on how to make robots learn without
being explicitly programmed. Many mathematicians and
programmers use a variety of ways to solve these problems,
which involves large data sets.

This led to increasing the execution time and the
need to optimize the performance. Testing, as a part of the
software engineering process, usually requires
approximately 40-50 percent of the development efforts in
software firms]16[. It is critical for any software to assess
its quality and ability to satisfy requirements, which may be
accomplished through testing this software [13] .

Also, software community aims to deliver high quality
software to customers, to ensure that the software will run
perfect with no delays in execution time, as this is the aim
of this research is to calculate the execution time of the
program "Diabetes prediction” which is Linear regression
Machine learning software written in python programming
language. Then make an optimization to a Linear
Regression Diabetes program, this could be achieved by
using the Particle Swarm Optimization (PSO) techniques,
as each population in each iteration searches for best
execution time through particles in this population, and
finally compares the best solution to produce the best

execution time. We chose this optimization method because
when compared to other methods, PSO has been shown to
produce superior results in a faster and less expensive
manner. It's also possible to parallelize it. Furthermore, it
does not consider the gradient of the problem to be solved.
To put it another way, unlike traditional optimization
methods, PSO does not require a differentiable problem.
Also, when compared to mathematical algorithms and other
heuristic optimization techniques, the PSO algorithm has
the following advantages: simple concept, simple
implementation, robustness to control parameters, and
computational efficiency.

The computer specifications that were used to
implement the two programs, as shown in figure 4 and 5.

Figure 4. CPU specifications

Figure 5. Memory specifications

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

54

Diabetes prediction program are described below in the
following part:

Diabetes prediction Program using linear regression:
Is a Linear Regression code written in Python by using
Anaconda Jypter toolkit. It predicts if a patient has diabetes
or not from their multiple risk factor (features) of DM such
as (HeartDiseaseorAttack,BMI,HighChol,..). We used five
libraries in this program: Numpy and Pandas to work with
a dataset to predict Diabetes and Sklearn for implementing
machine learning functions and PSO for optimizing the
machine learning code and finally the time library for
measuring the execution time of the code and we use a
diabetesdataset [14].

A. Diabetes dataset
It contains 22 columns which represent the risk factor
(features) of DM. while the first column Diabetes_binary
represents if a patient has diabetes, then its value =0 if not
its value=1. and the number of rows that represent the
number of patients
are 70,693 rows while the first row is to identify the name
of columns, as shown in the figure 6 below.

Figure 6 dataset diabetes

B. Implementation:

Step 1: Implementing the Diabetes program and we
named it (LinearRegressionDiabetes.ipynb) and the
program as explained before is to predict if a patient has
diabetes or not based on some features.And measuring the
execution time for the program Before Optimization. and
the program executed in 0.103 seconds and the compute
performance accuracy is 75 %, as shown in the figure 7,8
below.

Figure 7 . Workflow Diagram for Diabets Predection
Program without PSO

Figure 8 . execution time and accuracy of Diabetes program
before using optimazation method

Step 2: applying PSO method [15] on the same code from
step 1 and we named it
(LinearRegressionDiabetesPSO.ipynb) and it is for
optimizing the execution time for linear regression code in
step 1 .and the program executed in 0.033 seconds and the
compute performance has given the same accuracy of the
step 1 code is 75 %, as shown in the figure 9,10 below.

Figure.9 Workflow Diagram for Diabets Predection
Program with PSO

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

55

Figure 10. execution time and accuracy of Diabetes

program after using optimization method

Step 3: comparing the results from step 1 and step 2 and
finding the optimal execution time. The execution time is
optimized by approximately 89% after using Particle
Swarm Optimization.

Our proposed scheme shows the research paper general
work frame and the results of the experiment, as illustrated
below figure.11.

Figure 11. The proposed model.

5. RESULT

This paper presented the results of
LinearRegressionDiabetes, LinearRegressionDiabetesPSO.
In LinearRegressionDiabetesPSO, the results show a
massive decreasing in execution time by 89% while using
the same computing resources the summarization of the
result is as Illustrated in table I

Table I: Comparsion Between Two Programs In Execution
Time And Accuracy

Program
Execution

time
Accu
racy

LinearRegressionDiabetes
names as (Diabetes)

103
milliseconds

75%

LinearRegressionDiab
etesPS Onnames as

(DiabetesPSO)

33
milliseconds

75%

Program Execution time Accuracy
LinearRegressionDiabetes names as (Diabetes) 103
milliseconds 75% LinearRegressionDiabetesPS
Onnames as (DiabetesPSO) 33 milliseconds 75%

Figure 12. The diffrence of Execution time in both

programs

6. CONCLUSION

Computer architectures describe how a computer's
hardware components are connected, as well as the data
transfer and processing methods used. Different computer
architecture configurations have been developed to increase
data processing by speeding up data movement. The
research presents the application of PSO and its impact in
reducing the execution time of machine learning method
based on a huge dataset.

The proposed research described the basic concepts

of Machine learning and PSO and their impact on the
computer architecture and its performance, by calculating
execution time for software modules when using PSO and
without using it in our proposed (diabetes prediction

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

56

program) and it showed how it was useful in finding the
optimal solution to the problem. then Comparative study is
done between both the algorithms where PSO can be useful,
this paper shows that PSO algorithm is more efficient in
speed and time compared with same algorithm before
applying it when the execution time was calculated.

References

[1] Penney, D. D., & Chen, L. (2019). A survey of machine
learning applied to computer architecture design. arXiv
preprint arXiv:1909.12373.

[2] Wu, N., & Xie, Y. (2022). A survey of machine
learning for computer architecture and systems. ACM
Computing Surveys (CSUR), 55(3), 1-39.

[3] Nemirovsky, D., Arkose, T., Markovic, N.,
Nemirovsky, M., Unsal, O., Cristal, A., & Valero, M.
(2018). A general guide to applying machine learning
to computer architecture. Supercomputing Frontiers
and Innovations, 5(1), 95-115.

[4] N, S. T. (2020R. Nicole, “Title of paper with only first
word capitalized,” J. Name Stand. Abbrev., in press.

[5] S. Sun, Z. Cao, H. Zhu and J. Zhao, "A Survey of
Optimization Methods From a Machine Learning
Perspective," in IEEE Transactions on Cybernetics, vol.
50, no. 8, pp. 3668-3681, Aug. 2020, doi:
10.1109/TCYB.2019.2950779.

[6] Dumas II, J. D. (2018). Computer architecture:
Fundamentals and principles of computer design. CRC
Press.

[7] Himani Maheshwari, Pooja Goswami, Isha Rana,
(2019). A Comparative Study of Different Machine
Learning Tools. International Journal of Computer
Sciences and Engineering, 7(4), 184-190.

[8] Bennett, K. P., & Parrado-Hernández, E. (2006). The
interplay of optimization and machine learning
research. The Journal of Machine Learning Research,
7, 1265-1281.

[9] algorithm for static task scheduling in cloud. In
Advances in Big Data and Cloud Computing (pp. 61-
70). Springer, Singapore.

[10] Chirkin, A. M., Belloum, A. S., Kovalchuk, S. V.,
Makkes, M. X., Melnik, M. A., Visheratin, A. A., &
Nasonov, D. A. (2017). Execution time estimation for
workflow scheduling. Future generation computer
systems, 75, 376-387.

[11] Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2019). A survey
of optimization methods from a machine learning
perspective. IEEE transactions on cybernetics, 50(8),
3668-3681.

[12] Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang,
H., & Okanlawon, A. (2019). Improving HPC system
performance by predicting job resources via supervised
machine learning. In Proceedings of the Practice and

Experience in Advanced Research Computing on Rise
of the Machines (learning) (pp. 1-8).

[13] Darwish, N. R., Mohamed, A. A., & Zohdy, B. S.
(2016). Applying swarm optimization techniques to
calculate execution time for software modules. IJARAI,
5(3), 12-17.

[14] https://www.kaggle.com/datasets/alexteboul/diabetes-
health-indicators-dataset

[15] https://pyswarms.readthedocs.io/en/development/exa
mples/feature_subset_selection.html

[16] Jovanovic and Irena,”Software TestingMethods and
Techniques,” May26, 2008.

