• Title/Summary/Keyword: Computed Tomography (CT) image

Search Result 661, Processing Time 0.024 seconds

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Application of Artificial Intelligence to Cardiovascular Computed Tomography

  • Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1597-1608
    • /
    • 2021
  • Cardiovascular computed tomography (CT) is among the most active fields with ongoing technical innovation related to image acquisition and analysis. Artificial intelligence can be incorporated into various clinical applications of cardiovascular CT, including imaging of the heart valves and coronary arteries, as well as imaging to evaluate myocardial function and congenital heart disease. This review summarizes the latest research on the application of deep learning to cardiovascular CT. The areas covered range from image quality improvement to automatic analysis of CT images, including methods such as calcium scoring, image segmentation, and coronary artery evaluation.

Fundamentals and Applications of Cone-Beam Computed Tomography(CBCT) (임상가를 위한 특집 1 - CBCT의 기본원리 및 적용)

  • Park, In-Woo
    • The Journal of the Korean dental association
    • /
    • v.50 no.4
    • /
    • pp.180-188
    • /
    • 2012
  • Cone beam computed tomography(CBCT) machines recently developed in Korea, being designed for imaging hard tissues of the oral and maxillofacial region. I reported a brief overview of CBCT system, in comparison with coventional computed tomography(CT) system. CBCT provides high resolution, simpler image acquisition, lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

Computed Tomography and Quality Management (컴퓨터단층촬영장치와 품질관리)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • CT(computed tomography, CT) examinations is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. Recently, the number of CT scans is increasing every year due to the high reliability of CT scans. Increasing the number of tests will accelerate the aging of CT devices, which is why the importance of quality management for CT devices is on the rise. Particularly in CT, quality management refers to a behavior of figuring out and correcting all sorts of hindrance factors that can cause all the problems related to the equipment associated with the diminishment of diagnosed area due to the reduction of image quality in clinical imaging in advance and maintaining a consistent level of image quality and obtaining a proper image. Here, these researchers aim to summarize and report the general contents of quality management in CT.

Evaluation of Radiation Dose and Image Quality according to CT Table Height (CT 테이블 높이에 따른 방사선 선량 및 화질 평가)

  • Lee, Jongwoong;Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.453-458
    • /
    • 2017
  • Computed Tomography (CT) provides information on the Diagnostic Reference Level Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP) for accurate diagnosis of patients. However, it does not provide a dose change according to the table height for the diagnostic reference level provided by the CT equipment. The purpose of this study was to evaluate the image and dose according to the table height change using phantom (PMMA: Polymethyl Methacrylate) in order to find the optimal image and the minimum dose during computed tomography examination. When examining using a 32 cm PMMA phantom with the same thickness as the abdomen of an adult, there was little change in dose with table height. However, the noise evaluation of the image caused a high fluctuation of noise depending on the table height. and in the case of the 16 cm PMMA phantom, the change of the noise was small, but the dose change was about 30%. In conclusion, the location of the patient and the center of the detector are important during computed tomography (CT) examinations. In addition, table height setting is considered to be important for examinations with optimized image and minimum dose.

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter (비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study was tried to remove the noise and improve the spatial resolution in the computed tomography (CT) by using anisotropic 2-dimensional (2D) diffusion based filter. We used 4-channel multi-detector CT and american association of physicists in medicine (AAPM) phantom was used for CT performance evaluation to evaluate the image quality. X-ray irradiation conditions for image acquisition was fixed at 120 kVp, 100 mAs and scanned 10 mm axis with ultra-high resolution. The improvement of anisotropic 2D diffusion filtering that we suggested firstly, increase the contrast of the image by using histogram stretching to the original image for 0.4%, and multiplying the individual pixels by 1.2 weight value, and applying the anisotropic diffusion filtering. As a result, we could distinguished five holes until 0.75 mm in the original image but, five holes until 0.40 mm in the image with improved anisotropic diffusion filter. The noise of the original image was 46.0, the noise of the image with improved anisotropic 2D diffusion filter was decreased to 33.5(27.2%). In conclusion improved anisotropic 2D diffusion filter that we proposed could remove the noise of the CT image and improve the spatial resolution.

On the development of S/W tools for industrial 3D X-ray computed tomography employing general software (범용 소프트웨어를 사용한 산업용 3차원 X-ray Computed Tomography의 툴 개발)

  • Choi, Hyeong-Seok;Yang, Yoon-Gi
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.768-776
    • /
    • 2019
  • With the deployment of 4-th generation industrial revolution, the computer based manufacturing technologies employing advanced IT technology are much more popular than any other past years. In this research, some novel S/W technologies related to the industrial X-ray CT (computed tomography) for the inspection of the industrial parts are introduced. First, newly constructed industrial X-ray CT is presented in this paper, where some basic principles and functions of the CT are described. Then some research platforms are developed to generate more advanced functionalities of the industrial CT. Especially, the data transform from CT to general S/W such as Matlab is conducted. And based on this techniques, some supplementary S/W platform such as GUI (graphical user interface) of the CT S/W and some 3D voxel based image processing technologies can be developed in this paper. The industrial CT is one of the rare research items and it's values can be much more enhanced when it is used with advanced IT technologies.