• Title/Summary/Keyword: Computed Tomography (CT) Image

Search Result 655, Processing Time 0.029 seconds

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Experiences of the First 130 Patients in Gangnam Severance Hospital (강남세브란스병원 토모테라피를 이용한 치료환자의 130예 통계분석 및 경험)

  • Ha, Jin-Sook;Jeon, Mi-Jin;Kim, Sei-Joon;Kim, Jong-Dae;Shin, Dong-Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • Purpose: We are trying to analyze 130 patients' conditions by using our Helical Tomotherapy, which was installed in our center in Oct. 2007. We will be statistically approach this examination and analyze so that we will be able to figure out adaptive plans according to the change in place of the tumor, GTV (gross tumor volume), total amount of time it took, vector (${\upsilon}=\surd$x2+y2+z2) and the change in size of the tumor. Materials and Methods: Objectives were the patients who were medicated with Tomotherapy in our medical center since Oct. 2007 August 2008. The Average age of the patients were 53 years old (Minimum 25 years old, Maximum 83 years old). The parts of the body we operated were could be categorized as Head&neck (n=22), Chest (n=47), Abdomen (n=25), Pelvis (n=11), Bone (n=25). MVCT had acted on 2702 times, and also had acted on our adaptive plan toward patients who showed big difference in the size of tumor. Also, after equalizing our gained MVCT and kv-CT we checked up on the range of possible mistake, using x, y, z, roll and vector. We've also investigated on Set-up, MVCT, average time of operation and target volume. Results: Mean time on table was 22.8 minutes. Mean treatment time was 13.26 minutes. Mean correction (mm) was X=-0.7, Y=-1.4, Z=5.77, roll=0.29, vector=8.66 Head&neck patients had 2.96 mm less vector value in movement than patients of Chest, Abdomen, Bone. In increasing order, Head&neck, Bone, Abdomen, Chest, Pelvis showed the vector value in movement. Also, there were 27 patients for adaptive plan, 39 patients, who had long or multiple tumor. We could know that When medical treatment is one cure plan, it takes 32 minutes, and when medical treatment is two cure plan, it takes 40 minutes that one medical treatment takes 21 minutes, and the other medical treatment takes 19 minutes. Conclusion:With our basic tools, we could bring more accurate IMRT with MVCT. Also, through our daily image, we checked up on the change in tumor so that adaptive plan could work. It was made it possible to take the cure of long or multiple tumor, the cure in a nearby OAR, and the complicated cure that should make changes of gradient dose distribution.

  • PDF

CT Measurement of Diameter and Dimension of the Trachea in Normal Korean Adults (흥부 전산화단층촬영을 이용한 한국성인의 기관내경과 단면적의 측정)

  • Han, Jae-Youl;Kim, Kwang-Ho;Lee, Gun;Kim, Hyung-Jin;Cho, Soon-Koo;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.34 no.7
    • /
    • pp.534-538
    • /
    • 2001
  • Background: Knowledge of size and morphology of the normal trachea is important for airway management and tracheal reconstruction. Conventional radiography is a simple method used to measure the tracheal diameter, but it is not accurate because of the artifacts related to image magnification and overlapping by the shoulder. The purpose of this study was to provide the normal values of the tracheal size and anatomy in Korean adults using Computerized Topography. Material and Method: There were 43 men and 34 women included in this study. They were divided into three age groups(group 1, 20-39 years ; group 2, 40-59 yeas , groups 3, $\geq$60 years). The anteroposterior and transverse diameters and cross - sectional areas of the trachea were measured at the level of the thoracic inlet(Level 1) and the aortic arch(Level 2). These values obtained at each level were compared between age groups and sexes. Result: In 43 men, the anteroposterior / transverse diameters(mean SD in millimeters) of the trachea at levels 1 and 2 were 19.95$\pm$2.99 / 17.72$\pm$2.13 and 19.77$\pm$2.57 / 18.02$\pm$2.19, respectively. In 34 women, those values at levels 1 and 2 were 15.56$\pm$2.12 / 14.18$\pm$2.07 and 15.35$\pm$1.82 / 15.00$\pm$1.60, respectively. At both levels, the anteroposterior and transverse diameters were significantly greater in men than in women (p<0.05). The cross-sectional area of the trachea at levels 1 and 2 were 279.14$\pm$61.37 / 281.93$\pm$63.97 $\textrm{mm}^2$ in men and 173.29$\pm$35.81 / 181.88$\pm$34.74 in women, respectively. They also showed significantly greater values in men than in women(P<0.05). There was no significant difference in diameters and cross-sectional areas of the trachea between age groups. Conclusion: There are significant differences in the internal diameter and cross- sectional area of the trachea between men and women in normal Korean adults, while the age difference was insignificant. We believed CT is a relatively accurate and safe way to measure the internal diameter and cross-sectional areas of the trachea.

  • PDF

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF