Correlation analysis of radiation therapy position and dose factors for left breast cancer

좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석

  • Jeon, Jaewan (Department of Radiation Oncology, Inje University of Haeundae paik Hospital) ;
  • Park, Cheolwoo (Department of radiology, Dongui University of science and technology) ;
  • Hong, Jongsu (Department of Radiation Oncology, Inje University of Haeundae paik Hospital) ;
  • Jin, Seongjin (Department of Radiation Oncology, Inje University of Haeundae paik Hospital) ;
  • Kang, Junghun (Department of Radiation Oncology, Inje University of Haeundae paik Hospital)
  • 전재완 (인제대학교 해운대백병원) ;
  • 박철우 (동의과학대학교 방사선과) ;
  • 홍종수 (인제대학교 해운대백병원) ;
  • 진성진 (인제대학교 해운대백병원) ;
  • 강정훈 (인제대학교 해운대백병원)
  • Published : 2017.06.30

Abstract

Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

목 적: 방사선치료의 가장 기본적인 조건은 정상조직의 불필요한 피폭을 방지하는 것이다. 유방암의 경우는 폐와 심장에 조사되는 선량이 중요하게 평가되는 인자이다. 따라서 유방암 방사선치료 자세에 따른 정상조직에 조사되는 선량을 비교하고 그 연관성을 상관관계 분석을 통하여 결과를 확인하여 보다 효과적인 유방암 방사선 치료방법을 모색하고자 한다. 대상 및 방법: 본원을 내원한 좌측 유방암 환자 30명을 대상으로 Supine, Prone Position에서 CT image를 획득하였다. Eclipse Treatment Planning System(Version 11, USA)을 이용하여 전산화치료계획을 수립하였다. DVH(Dose Volume Histogram)을 통해 Position 별로 정상조직에 조사된 선량을 비교하였다. 그 결과를 바탕으로 SPSS(Version 18)을 이용하여 각 정상조직의 선량인자를 통계분석하고 항목 간 상관관계 분석 및 독립표본 t-test를 통하여 그 연관성을 알아보았다. 그리고 MIRADA RTx(Version Advanced 1.6, UK)를 이용하여 HI(Homogeneity Index)와 CI(Conformity Index)를 Supine, Prone Position에서 값을 구하고 비교하였다. 결 과: 유방암의 전산화치료계획의 결과 폐의 경우는 Supine Position에서 V20은 $16.5{\pm}2.6%$, V30은 $13.8{\pm}2.2%$, Mean dose는 $779.1{\pm}135.9cGy$(Absolute value)를 보였다. Prone Position은 위 순서대로 $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$를 보였다. Prone Position이 전반적으로 낮은 선량을 나타내었고 평균선량 537.7 cGy가 더 적게 폐에 조사되었다. 심장의 경우에는 Supine, Prone 순서대로 V30은 $8.1{\pm}2.6%$, $5.1{\pm}2.5%$, Mean dose는 $594.9{\pm}225.3cGy$, $408{\pm}183.6cGy$를 보였다. Prone Position에서 평균선량 182.6 cGy가 더 적게 조사된다는 것을 확인하였다. 통계분석 결과 신뢰도 분석지표인 Cronbach's Alpha value는 0.563이였고 변수간의 상관관계분석 결과 치료자세와 폐의 선량평가인자는 대략 0.89 이상으로 그 상관관계가 높았다. 반면 심장의 경우는 V30은 0.488, Mean dose는 0.418로 상관관계가 다소 적었다. 마지막으로 독립표본 t-test 결과 치료자세와 폐, 심장의 선량평가인자가 신뢰수준 99 %에서 모두 유의하게 나타났다($p-value{\leq}0.05$). 결 론: 현재 방사선치료는 최첨단 선형가속기와 다양화된 전산화치료계획 기술이 개발되고 있다. 이 발전의 기본전제 조건은 PTV(Planning Target Volume) 주위의 정상조직 보호라고 생각한다. 물론 유방암 환자를 Prone Position에서 치료하면 Set-up의 재현성 문제와 다소 많은 시간이 소요되지만 이 실험결과에서 보듯이 Prone Position에서 폐와 심장에 들어가는 선량을 줄일 수 있으며 그 연관관계도 의미가 있다는 것을 확인하였다. 결론적으로 Prone Position에서 충분한 치료시간을 확보하고 정확한 치료부위 확인이 이루어진다면 환자에게 보다 좋은 방사선치료를 제공할 수 있다고 생각된다.

Keywords

References

  1. Korean Breast Cancer Society. Korean breast cancer data of 1997. J Korean Cancer Association 1999;31:1202-1209
  2. Central Cancer Registry Center in Korea. Cancer facts and figures 2013.Seoul :Ministry of Health and Welfare;2013
  3. Ministry of Health and Welfare. Republic of Korea and National Cancer Center. Annual report of cancer registry program in the Republic of Korea. 2001.1.1.-2001.12.31.2003
  4. NHI Consensus Conference. Treatment of early stage breast cancer. JAMA,1991;265:391-395 https://doi.org/10.1001/jama.1991.03460030097037
  5. Poortmans P. Evidence based radiation oncology: Breast cancer. Radiother Oncol 2007;84:84-101 https://doi.org/10.1016/j.radonc.2007.06.002
  6. Shafiq J, Delaney G, Barton MB. An evidencebased estimation of local control and survival benefit of radiotherapy for breast cancer. Radiother Oncol 2007;84:11-17 https://doi.org/10.1016/j.radonc.2007.03.006
  7. Dr Emami B. Tolerance of Normal Tissue to Therapeutic Radiation. Department of Radiation Oncology, Loyola University Medical Center. USA
  8. Graham MV, Purdy JA, Emami B, et al. Clinical dose volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer(NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323-329
  9. Early Breast Cancer Trialists' Collaborative Group(EBCTCG): Effects of radiotherapy and of difference in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366(9503):2087-2106 https://doi.org/10.1016/S0140-6736(05)67887-7
  10. Sarah CD, Paul MG, Carolyn WT, et al: Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in USSEER cancer registries. Lancet Oncol 2005;6(8):557-565 https://doi.org/10.1016/S1470-2045(05)70251-5
  11. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013;368:987-98 https://doi.org/10.1056/NEJMoa1209825
  12. Remouchamps VM, Vicini FA, Sharpe MB, et al. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patient treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys. 2003;55:392-406 https://doi.org/10.1016/S0360-3016(02)04143-3
  13. Formeni SC, Gidea-Addeo D, Goldberg JD, et al. Phase I-II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol 2007;25:2236-2242 https://doi.org/10.1200/JCO.2006.09.1041
  14. Zoltan Varga, Katalin Hideghety,M.D.,Ph D.,외 4명. INDIVIDUAL POSITIONING: A COMPARATIVE STUDY OF ADJUVANT BREAST RADIOTHERAPY IN THE PRONE VERSUS SUPINE POSITION. Int J. Radiation Oncology Biol. Phys 2009;75:94-100 https://doi.org/10.1016/j.ijrobp.2008.10.045
  15. Liv Veldeman,M.D, Bruno Speleers,Marlies Bakker, Filip Jacobs,Ir,Ph.D. PRELIMINARY RESULTS ON SETUP PRECISION OF PRONE-LATERAL PATIENT POSITIONING FOR WHOLE BREAST IRRADIATION. Int J. Radiation Oncology Biol. Phys. 2010;78:111-11 https://doi.org/10.1016/j.ijrobp.2009.07.1749
  16. Mulliez T, Veldeman L, Van Greveling A, Speleers B, Berwouts D, et al. Hypofractionated whole breast irradiation for patients with large breast : a randomized trial comparing prone and supine position. Radiother Oncol 2013;108:203-8 https://doi.org/10.1016/j.radonc.2013.08.040
  17. Kirby AM, Evans PM, Donovan EM, Convery HM, Haviland JS, Yarnold JR. Prone versus supine positioning for whole and partial- breast radiotherapy : a comparison of non-target tissue dosimetry. Radiother Oncol 2010;96:178-84 https://doi.org/10.1016/j.radonc.2010.05.014
  18. Merchant TE, McCormick B. Prone position breast irradiation. Int J Radiat Oncol Biol Phys 1994;30:197-203
  19. Suzy Kim, Yunseok Choi. Dosimetric advantage of the Field-in-field plan compared with the Tangential Wedged Beams plan for Whole-Breast Irradiation. Korean Journal of Medical Physics 2014;25(4):199-204
  20. Wu Q, Mohan R, Morris M, Lavue A, Schmidt-Ullrich R. Simultaneous integrated boost intensitymodulated radiotherapy for locally advanced headand- neck squamous cell carcinomas : Dosimetric results. Int J Radiat Oncol Biol Phys. 2003;26:573-85
  21. Sun Young Moon, Myonggeun Yoon, Weon Kuu Chung, Mijoo Chung, Dong Oh Shin, Dong Wook Kim. Comparison of Dosimetric Parameters of Patient with Large and Pendulous Breast Receiving Breast Radiotherapy in the prone versus supine position. Progress in Medical Physics 2015;26(4)