• 제목/요약/키워드: Computational visualization

검색결과 333건 처리시간 0.021초

Numerical Analysis of Interaction Between Supersonic Jet and Perpendicular Plate

  • Yasunobul T.;Matsuokal T.;Kashimura H.;Setoguchi T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.141-142
    • /
    • 2003
  • When the under-expanded supersonic jet impinges on the perpendicular plate, it is well known that the self-induced flow oscillation occurs at the specific conditions. This phenomenon is related with the noise problems of aeronautical and other industrial engineering. But, the very complicated flow field is formed and it is difficult to clear the flow structure and the mechanism of oscillation. This paper aims to clear the characteristics of flow field and the wave pattern during the under-expanded supersonic jet impinges on the plate. The numerical calculation was carried out using the TVD numerical method. In this paper, the flow visualization, the pressure fluctuation on the surface of plate and the mechanism of oscillation are discussed.

  • PDF

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • KAWAMURA Tetuya;LEE Mi Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.228-229
    • /
    • 2003
  • Complex flow field around the Darius turbine rotating stationally are simulated by solving the three dimensional incompressible Navier-Stokes equation numerically. The rotating coordinate system is employed so that the boundary conditions on the blades of the rotor become simple. In order to impose the boundary condition on the blades precisely, the boundary fitted coordinate system is employed. Fractional step method is used to solve the basic equations. The complex flow fields due to the three dimensionality of the geometry of the turbine and the rotation of the turbine are obtained and they are visualized effectively by using the technique of the computer graphics.

  • PDF

Hydrodynamic Characteristics of a Small Bee in Hovering Flight

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.100-109
    • /
    • 2008
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the vortex method. The vortex method. especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained. As the results the eddies near the leading edge of each wing in the fling stage take a convex shape because the eddies shed from both tips entrain the flows and the downwash in the rotating stage is deflected toward the outside because the outside tip vortex is stronger than the inside one. And the lift coefficient on the wings in this mechanism is almost independent of the Reynolds number.

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

실험 및 중첩격자를 이용한 수치해석에 의한 원형단면체 주위의 유동고찰 (Experimental and Computational Investigation of the Flow around a Circular Cylinder)

  • 송무석;;임근태;김우전
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.130-140
    • /
    • 1997
  • 원형주상체 주위의 유동을 규명하기 위해 회류수조에서 원주방향으로 24개의 위치에 대하여 압력을 계측하였으며, laser sheet을 이용하여 유동을 가시화 하였다. Reynolds수가 4800에서 40000인 범위에 대하여 실험을 수행하였다. 또한, 원형단면체 주위의 비정상 층류유동에 대한 Navier-Stokes방정식의 해를 구하는 수치해석기법을 개발하였다. 효과적인 격자배치를 위하여 H와 O-type의 중첩격자를 사용하였고, 이산화 방법으로는 정규격자시스템에서 유한차분법을 적용하였다. 실험과 수치해석결과에서 뚜렷한 와류박리현상을 볼 수 있었으며, 압력계수 (C$_{p}$ ), 항력계수(C$_{D}$), 스트로얼수(St)를 정량적으로 비교하였을 때, 비교적 잘 일치하는 것을 확인하였다.다.

  • PDF

상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성 (Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator)

  • 김윤식;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

Cactus와 GridSphere를 이용한 e-Science 협업 연구 환경 (The e-Science collaborative research environment using the Cactus and the GridSphere)

  • 나정수;조금원;송영덕;김영균;고순흠
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.35-40
    • /
    • 2005
  • Up to recently, with the improvement of a computer power and high speed of network technology, advanced countries have researched a construction of the e-Science environment. As a major application part, a construction for environment of CFD, also, have studied together. During the research, people realize that not sharing hardware but also appropriate software development is really important to realize the environment. This paper describes about a construction of a collaborative research environment in the KISTI: Clients can connect to the computing resources through the web portal, run the Cactus simulation.: According to the computing resources, the simulation can migrate to some site to find better computing power.: Result of the calculation visualize at the web portal directly so that researchers of remote site can be share and analyze the result collaborative ways.

  • PDF

PDMS 기반 초소수성 마이크로 채널내의 유동 및 표면 젖음 전이 가시화에 관한 연구 (Visualization of Flow and Wetting Transition in PDMS Superhydrophobic Microchannel)

  • 김지훈;홍종인;변도영;고한서
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.671-674
    • /
    • 2008
  • We investigate the slippage effect in a micro-channel depending on the surface characteristics; hydrophilic, hydrophobic, and super-hydrophobic wettabilities. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (Micro-PIV) and compared those in the hydrophilic glass, hydrophobic PDMS, and super-hydrophobic PDMS micro-channels. To directly measure the velocity in the super-hydrophobic micro-channel, the transverse groove structures are fabricated on the vertical wall in the micro-channel. The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves.

  • PDF

직경 10-${\mu}$m 이하의 야누스 입자 생성 (Generation of Janus particles smaller than 10-${\mu}$m in diameter)

  • 안상훈;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.679-682
    • /
    • 2008
  • The particle which has two different characteristics on both sides is called Janus particle which is emerging as a key material in microscale transport systems. For example, if one hemisphere has polarity and the other does not, then nonpolar sides would attract each other so that a complex cluster is formed. Thus, this fascinating material can be used as an element of twisting ball panel display, complex micro-scale clusters, drug delivery unit, and active detecting beads. The keywords in developing Janus particle are size and uniformity. Former researches solved uniformity but downsizing still remains a problem. There are three methods to generate small size particles in microchannels: co-flowing, cross-flowing, and elongational flows. In this research, we generate Janus particles smaller than 10-${\mu}$m in diameter using elongational flow in microchannels. And we use UV initiator with Hydrogen UV source to solidify micro size particles. One hemisphere of the particle is coated with rhodamin for visualization.

  • PDF

온도조절 모드에 따른 차량용 공조장치 내부 유동특성 (Internal flow characteristics inside an automobile HVAC according to temperature operation mode)

  • 지호성;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.687-688
    • /
    • 2008
  • Air flow of inside automobile HVAC module has been visualized using a high-resolution PIV technique with varying the temperature operation mode. The PIV system consists of a 2-head Nd:YAG laser(125 mJ), a high-resolution CCD camera(2K x 2K), optics and a synchronizer. A real automobile HVAC module was used directly with slight modification for clear optical windows. Some parts of the HVAC module casing were replaced with transparent windows for capturing flow images with laser light sheet beam illumination. Time-averaged velocity field were measured in three temperature control modes. Flow characteristics of the air-conditioned air flow in the automobile HVAC system were evaluated.

  • PDF