• 제목/요약/키워드: Computational simulations

검색결과 1,507건 처리시간 0.032초

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구 (IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT)

  • 강형민
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

웹기반 대용량 계산환경 구축 및 응용사례 (Development of Web-based High Throughput Computing Environment and Its Applications)

  • 정민중;김병상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.719-724
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures.

  • PDF

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF

2차원 후항계단유동에 대한 URANS와 DES의 수치해석 평가 (ASSESSMENT OF URANS AND DES SIMULATIONS FOR TWO-DIMENSIONAL BACKWARD FACING STEP FLOW)

  • 송지수;박승오
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.25-31
    • /
    • 2006
  • A two-dimensional backward facing step flow is simulated by using URANS and Detached Eddy Simulations(DES) approaches. Turbulence models adopted for URANS and DES simulations are Spalart-Allmaras(S-A) model and Shear Stress Transport(SST) model. The target flow with ER=1.125, $Re_H=37,500$ is experimentally studied by Driver & Seegmiller. Various versions of DES have been tested in this paper. Results of the simulations are compared with the experimental data available to evaluate the merits and demerits of URANS and several versions of DES. URANS simulation converges to a steady state and hence unsteady characteristics are not featured. DES simulations in general successfully mimic large scale structures and oscillation characteristics of the flow.

최적화에서의 근사모델 관리기법의 활용 (A Framework for Managing Approximation Models in place of Expensive Simulations in Optimization)

  • 양영순;장범선;연윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.159-167
    • /
    • 2000
  • In optimization problems, computationally intensive or expensive simulations hinder the use of standard optimization techniques because the computational expense is too heavy to implement them at each iteration of the optimization algorithm. Therefore, those expensive simulations are often replaced with approximation models which can be evaluated nearly free. However, because of the limited accuracy of the approximation models, it is practically impossible to find an exact optimal point of the original problem. Significant efforts have been made to overcome this problem. The approximation models are sequentially updated during the iterative optimization process such that interesting design points are included. The interesting points have a strong influence on making the approximation model capture an overall trend of the original function or improving the accuracy of the approximation in the vicinity of a minimizer. They are successively determined at each iteration by utilizing the predictive ability of the approximation model. This paper will focuses on those approaches and introduces various approximation methods.

  • PDF

COMPUTATIONAL SIMULATIONS OF FLUID FLOWS

  • Kunio Kuwahara;Kwak, Ho-Sang
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.15-29
    • /
    • 1996
  • A fair portion of the dream to acquire the solutions to the Navier-Stokes equations has come true through the remarkable development of computers and solution algorithms in recent years. However, it is also true that there still remain serious hurdles in simulating general fluid flows. A few numerical trials to overcome the existing difficulties are introduced. The issues in numerical simulations of high-Reynolds-number flows, flows characterized by complex body geometry, and multi-phase flows, are scrutinized. The future of computational fluid dynamics as a promising tool for flow analyses is illuminated by this review.

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows

  • Bertani, Gregorio;Patruno, Luca;Aguera, Fernando Gandia
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.499-510
    • /
    • 2022
  • Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.