Browse > Article
http://dx.doi.org/10.12989/was.2022.34.6.499

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows  

Bertani, Gregorio (DICAM, University of Bologna)
Patruno, Luca (DICAM, University of Bologna)
Aguera, Fernando Gandia (EIDR/UPM, Universidad Politecnica de Madrid)
Publication Information
Wind and Structures / v.34, no.6, 2022 , pp. 499-510 More about this Journal
Abstract
Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.
Keywords
2D RANS; bluff body aerodynamics; drag coefficient; wind engineering;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. D. Holmes (2018), loading of structures." CRC press, 2018.
2 Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5: 1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016.   DOI
3 Roshko, A. (1993), "Perspectives on bluff body aerodynamics", J. Wind Eng. Ind. Aerod., 49(1-3), 79-100. https://doi.org/10.1016/0167-6105(93)90007-B.   DOI
4 Fransos, D. and Bruno, L. (2010), "Edge degree-of-sharpness and free-stream turbulence scale effects on the aerodynamics of a bridge deck", J. Wind Eng. Ind. Aerod., 98(10-11), 661-671. https://doi.org/10.1016/j.jweia.2010.06.008.   DOI
5 Montoya, M.C., Nieto, F. and Hernandez, S. (2021), "Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach", Wind Struct., 32(4), 355-369. https://doi.org/10.12989/was.2021.32.4.355.   DOI
6 Nieto, F., Montoya, M.C., Hernandez, S., Kusano, I., Casteleiro, A., Alvarez, A.J. and Fontan, A. (2020), "Aerodynamic and aeroelastic responses of short gap twin-box decks: Box geometry and gap distance dependent surrogate based design", J. Wind Eng. Ind. Aerod., 201, 104147. https://doi.org/10.1016/j.jweia.2020.104147.   DOI
7 Oka, S. and Ishihara, T. (2009), "Numerical study of aerodynamic characteristics of a square prism in a uniform flow", J. Wind Eng. Ind. Aerod., 97(11-12), 548-559. https://doi.org/10.1016/j.jweia.2009.08.006.   DOI
8 Pecora, M., Lecce, L., Marulo, F. and Coiro, D.P. (1993), "Aeroelastic behaviour of long span bridges with "multibox" type deck sections", J. Wind Eng. Ind. Aerod., 48(2-3), 343-358. https://doi.org/10.1016/j.jweia.2016.01.008.   DOI
9 Bernardini, E., Spence, S.M., Wei, D. and Kareem, A. (2015), "Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach", J. Wind Eng. Ind. Aerod., 144, 154-164. https://doi.org/10.1016/j.jweia.2015.03.011.   DOI
10 M. Horvat, L. Bruno, S. Khris, and L. Raffaele. "Aerodynamic shape optimization of barriers for windblown sand mitigation using cfd analysis", J. Wind Eng. Ind. Aerod., 197, 104058. https://doi.org/10.1016/j.jweia.2019.104058.   DOI
11 Patruno, L. and de Miranda, S (2020), "Unsteady inflow conditions: A variationally based solution to the insurgence of pressure fluctuations", Comput. Meth. Appl. Mech. Eng., 363, 112894. https://doi.org/10.1016/j.cma.2020.112894.   DOI
12 Yen, S.C. and Yang, C.W. (2011), "Flow patterns and vortex shedding behavior behind a square cylinder", J. Wind Eng. Ind. Aerod., 99(8), 868-878. https://doi.org/10.1016/j.jweia.2011.06.006.   DOI
13 Yoon, D.H., Yang, K.S. and Choi, C.B. (2010), "Flow past a square cylinder with an angle of incidence", Phys. Fluids, 22(4), 043603. https://doi.org/10.1063/1.3388857.   DOI
14 Yoshizawa, A. (1986), "Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling", Phys. Fluids, 29(7), 2152-2164. https://doi.org/10.1063/1.865552.   DOI
15 Tian, X., Ong, M.C., Yang, J. and Myrhaug, D. (2013), "Unsteady rans simulations of flow around rectangular cylinders with different aspect ratios", Ocean Eng., 58, 208-216. https://doi.org/10.1016/j.oceaneng.2012.10.013.   DOI
16 Gandia, F., Meseguer, J. and Sanz-Andres, A. (2014), "Static and dynamic experimental analysis of the galloping stability of porous h-section beams", Sci. World J., 2014. https://doi.org/10.1155/2014/746826.   DOI
17 Fage, A. and Johansen, F.C. (1927), "On the flow of air behind an inclined flat plate of infinite span", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 116(773), 170-197.
18 Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: a computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.   DOI
19 Cid Montoya, M., Nieto, F., Alvarez, A.J., Hernandez, S., Jurado, J.A. and Sanchez, R. (2018), "Numerical simulations of the aerodynamic response of circular segments with different corner angles by means of 2D URANS: Impact of turbulence modeling approaches", Eng. Appl. Comput. Fluid Mech., 12(1), 750-779. https://doi.org/10.1080/19942060.2018.1520741.   DOI
20 Collie, S., Gerritsen, M. and Jackson, P. (2008), "Performance of two-equation turbulence models for flat plate flows with leading edge bubbles", J. Fluids Eng., 130(2). https://doi.org/10.1115/1.2829596.   DOI
21 Forces, E.F. Pressures and Moments on Rectangular Blocks. Engineering Science Data Item, (71016).
22 Hishimura, H. (2000), "Fluctuating pressures on two-dimensional rectangular prisms", J. Struct. Constr. Eng., 538, 49-55.   DOI
23 Kuroda, S. (1997), "Numerical simulation of flow around a box girder of a long span suspension bridge", J. Wind Eng. Ind. Aerod., 67-68, 239-252. https://doi.org/10.1016/S0167-6105(97)00076-7.   DOI
24 Bruno, L., Fransos, D. and Giudice, A.L. (2018), "Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines", J. Wind Eng. Ind. Aerod., 173, 79-90. https://doi.org/10.1016/j.jweia.2017.12.005.   DOI
25 Bearman, P.W. and Trueman, D.M. (1972), "An investigation of the flow around rectangular cylinders", Aeronautic. Quart., 23(3), 229-237. https://doi.org/10.1017/S0001925900006119.   DOI
26 Bruno, L. and Fransos, D. (2011), "Probabilistic evaluation of the aerodynamic properties of a bridge deck", J. Wind Eng. Ind. Aerod., 99(6-7), 718-728. https://doi.org/10.1016/j.jweia.2011.03.007.   DOI
27 Bruno, L. and Khris, S. (2003), "The validity of 2D numerical simulations of vortical structures around a bridge deck", Mathem. Comput. Modelling, 37(7-8), 795-828. https://doi.org/10.1016/S0895-7177(03)00087-6.   DOI
28 Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: an overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.   DOI
29 Durbin, P.A. (1991), "Near-wall turbulence closure modeling without damping functions", Theoretical Comput. Fluid Dyn., 3(1), 1-13. https://doi.org/10.1007/BF00271513.   DOI
30 Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.   DOI
31 Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind Eng. Ind. Aerod., 69, 55-75. https://doi.org/10.1016/S0167-6105(97)00147-5.   DOI
32 Shimada, K. and Ishihara, T. (2012), "Predictability of unsteady two-dimensional k-ε model on the aerodynamic instabilities of some rectangular prisms", J. Fluids Struct., 28, 20-39.   DOI
33 Tamura, Y. and Van Phuc, Y. (2015), "Development of cfd and applications: Monologue by a non-cfd-expert", J. Wind Eng. Ind. Aerod., 144, 3-13. https://doi.org/10.1016/j.jweia.2015.05.003.   DOI
34 Nieto, F., Hernandez, S., Jurado, J.A. and Baldomir, A. (2010), "CFD practical application in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4), 309-326. https://doi.org/10.12989/was.2010.13.4.309.   DOI
35 Mariotti, A., Salvetti, M.V., Omrani, P.S. and Witteveen, J.A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.   DOI
36 Menter, F.R. (1992), "Improved two-equation k-omega turbulence models for aerodynamic flows", Nasa Sti/recon Technical Report N, 93:22809, 1992.
37 Nieto, F., Hargreaves, D.M., Owen, J.S. and Hernandez, S. (2015), "On the applicability of 2D URANS and SST k-ω turbulence model to the fluid-structure interaction of rectangular cylinders", Eng. Appl. Comput. Fluid Mech., 9(1), 157-173. https://doi.org/10.1080/19942060.2015.1004817.   DOI
38 Nishimura, A. and Taniike, Y. (2000), "Fluctuating wind forces of a stationary two dim. square prism", In Proceedings of 16th National Symposium on Wind Engineering, 255-260.
39 Norberg, C. (1993), "Flow around rectangular cylinders: pressure forces and wake frequencies", J. Wind Eng. Ind. Aerod., 49(1-3), 187-196. https://doi.org/10.1016/0167-6105(93)90014-F.   DOI
40 Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5: 1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.   DOI
41 Tamura, T. Ohta, I. and Kuwahara. K. (1990), "On the reliability of two-dimensional simulation for unsteady flows around a cylinder-type structure", J. Wind Eng. Ind. Aerod., 35, 275-298. https://doi.org/10.1016/0167-6105(90)90221-W.   DOI
42 Blocken, B., Tominaga, Y. and Stathopoulos, T. (2013), "CFD simulation of micro-scale pollutant dispersion in the built environment", Build. Environ., 64, 225-230. https://doi.org/10.1016/j.buildenv.2013.01.001.   DOI
43 Blocken, B., Janssen, W.D. and van Hooff, T. (2012), "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus", Enviro. Modelling Softw., 30, 15-34. https://doi.org/10.1016/j.envsoft.2011.11.009.   DOI
44 Qiu, Y., San, B., He, H. and Zhao, Y. (2021), "Surrogate-based aerodynamic optimization for enhancing the shelter effect of porous fences on a triangular prism", Atmos. Environ., 244, 117922. https://doi.org/10.1016/j.atmosenv.2020.117922.   DOI
45 Ricci, M., Patruno, L., Kalkman, I., de Miranda, S. and Blocken, B. (2018), "Towards LES as a design tool: Wind loads assessment on a high-rise building", J. Wind Eng. Ind. Aerod., 180, 1-18. https://doi.org/10.1016/j.jweia.2018.07.009.   DOI
46 Roshko, A. (1955), "On the wake and drag of bluff bodies", J. Aeronaut. Sci., 22(2), 124-132. https://doi.org/10.2514/8.3286.   DOI
47 Shimada, K. and Ishihara, T. (2002), "Application of a modified k-ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders", J. Fluids Struct., 16(4), 465-485. https://doi.org/10.1006/jfls.2001.0433.   DOI
48 Standard, B. (2006), Eurocode 1: Actions on structures.
49 Thordal, M.S., Bennetsen, J.C., Capra, S. and Koss, H.H.H. (2020), "Towards a standard cfd setup for wind load assessment of high-rise buildings: Part 1-benchmark of the caarc building", J. Wind Eng. Ind. Aerod., 205, 104283. https://doi.org/10.1016/j.jweia.2020.104283.   DOI
50 Tominaga, Y. and Stathopoulos, T. (2013), "Cfd simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques", Atmos. Environ., 79, 716-730. https://doi.org/10.1016/j.atmosenv.2013.07.028.   DOI
51 Yakhot, V., Orszag, S., Thangam, S., Gatski, T. and Speziale, C. "Development of turbulence models for shear flows by a double expansion technique", Phys. Fluids A: Fluid Dyn., 4(7), 1510-1520. https://doi.org/10.1063/1.858424.   DOI