• Title/Summary/Keyword: Computational imaging

Search Result 247, Processing Time 0.025 seconds

Resolution improvement of 3D images in plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 재생 방법에서 3차원 영상의 해상도 개선)

  • Shin, Dong-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1944-1949
    • /
    • 2007
  • In this paper, a new plane-based computational reconstruction technique for three-dimensional (3D) objects in 3D internal imaging based on a lens model is proposed. For the proposed technique, computational experiments have been carried out for various test images. Resolution of the reconstructed images is analyzed and compared with that obtained by the conventional technique. From experiments, it is shown that the resolution of a 3-D reconstructed image was improved by using the proposed technique.

Computational reconstruction techniques in integral imaging by use of a lenslet array

  • Shin, Dong-Hak;Kim, Eun-Soo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1588-1591
    • /
    • 2005
  • In this paper, we propose novel computational reconstruction technique of three-dimensional objects in integral imaging by use of a lenslet array. We applied our technique to two different integral imaging systems according the distance between lenslet array and elemental image plane. Experimental results are presented and discussed as well.

  • PDF

Computational integral imaging reconstruction method using round-type mapping model (원형 매핑 모델을 사용하는 컴퓨터 직접 영상 재생 방식)

  • Sin, Dong-Hak;Kim, Nam-Woo;Lee, Jun-Jae;Lee, Byeong-Guk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.259-260
    • /
    • 2007
  • In this paper, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIP method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resoulution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

  • PDF

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

Three-Dimensional Photon Counting Imaging with Enhanced Visual Quality

  • Lee, Jaehoon;Lee, Min-Chul;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.180-187
    • /
    • 2021
  • In this paper, we present a computational volumetric reconstruction method for three-dimensional (3D) photon counting imaging with enhanced visual quality when low-resolution elemental images are used under photon-starved conditions. In conventional photon counting imaging with low-resolution elemental images, it may be difficult to estimate the 3D scene correctly because of a lack of scene information. In addition, the reconstructed 3D images may be blurred because volumetric computational reconstruction has an averaging effect. In contrast, with our method, the pixels of the elemental image rearrangement technique and a Bayesian approach are used as the reconstruction and estimation methods, respectively. Therefore, our method can enhance the visual quality and estimation accuracy of the reconstructed 3D images because it does not have an averaging effect and uses prior information about the 3D scene. To validate our technique, we performed optical experiments and demonstrated the reconstruction results.

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Round Mapping Model

  • Shin, Dong-Hak;Kim, Nam-Woo;Yoo, Hoon;Lee, Joon-Jae;Lee, Byoung-Ho;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.649-654
    • /
    • 2007
  • In this paper, we propose a computational integral imaging reconstruction (CIIR) method using a round mapping model to improve the viewing quality of 3-D images. The proposed CIIR method can overcome the problem of non-uniformly reconstructed images caused by the conventional method. To show the usefulness of proposed method, some experiments are carried out and the results are presented.

  • PDF

The Comparison of thrust computational methods of a brushless DC linear motor (브러시 없는 직류 선형 모터의 추력 계산 방법의 비교)

  • Choi, Moon-Suk;Kim, Yong-Yil
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.32-34
    • /
    • 1997
  • For a given brushless DC linear motor, we suggest the numerical prediction methods to analyze it's thrust characteristics. First, we calculate the magnetic flux density by the finite element method, and we then compute the maximum thrust with three computational methods - a Lorentz equation, a Maxwell stress method and a virtual work method. To confirm the accuracy of the computational methods, we measure the thrust of the linear motor made by our laboratory with a force-torque sensor. Also, we calculate the thrust by the measured back electromotive force. To choose the appropriate method for a specified application, we compare the maximum thrusts of the computational method and the calculation by the back electromotive force with the measured one. We conclude that the Maxwell stress method is turned out the best because it has the most accurate results among three computational methods and it is more convenient than the calculation method by the back electromotive force.

  • PDF

Nonlinear 3D image correlator using computational integral imaging reconstruction method (컴퓨터 집적 영상 복원 방법을 이용한 비선형 3D 영상 상관기)

  • Shin, Dong-Hak;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.155-157
    • /
    • 2012
  • In this paper, we propose a nonlinear 3D image correlator using computational reconstruction of 3D images based on integral imaging. In the proposed method, the elemental images for reference 3D object and target 3D object are recorded through the lens array. The recorded elemental images are reconstructed as reference plane image and target plane images using the computational integral imaging reconstruction algorithm and the nonolinear correlation between them is performed for object recognition. To show the usefulness of the proposed method, the preliminary experiments are carried out and the experimental results are presented compared with the conventional results.

  • PDF