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We propose a computational reconstruction technique 
in large-depth integral imaging where the elemental 
images have information of three-dimensional objects 
through real and virtual image fields. In the proposed 
technique, we reconstruct full volume information from 
the elemental images through both real and virtual image 
fields. Here, we use uniform mappings of elemental 
images with the size of the lenslet regardless of the distance 
between the lenslet array and reconstruction image plane. 
To show the feasibility of the proposed reconstruction 
technique, we perform preliminary experiments and 
present experimental results. 
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I. Introduction 

Integral imaging, which is a three-dimensional (3-D) image 
display technique with full parallax and continuous viewing 
points, has been the subject of much research [1]-[12]. In the 
pickup part of integral imaging, the rays coming from 3-D 
objects are recorded as 2-D elemental images with a lenslet 
array (or pinhole array) and a 2-D image sensor. In the display 
part of II, the recorded 2-D elemental images are displayed in a 
display device, and rays coming from the elemental images are 
then gathered in space to form 3-D real images.  

Recently, studies have been reported for two kinds of integral 
imaging according to the gap distance between a lenslet array 
and a display panel; depth-priority integral imaging (DPII) and 
resolution-priority integral imaging (RPII) [13], [14]. DPII is 
obtained by setting the gap equal to the focal length of the 
lenslets. It provides 3-D images with low resolution and large 
depth through both real and virtual image fields. On the other 
hand, RPII is obtained when the gap distance is not equal to the 
focal length of the lenslets. It gives us 3-D images with high 
resolution and small depth.  

In II, computational reconstruction techniques can be used to 
overcome image quality degradation caused by optical devices 
and to have the freedom to generate the viewing angle of the 
reconstructed objects without optical devices [15]-[19]. In 
particular, Hong and others have reported on a computational 
reconstruction technique to obtain full 3-D volume information, 
which can be used for image processing applications such as 3-
D surface extraction, based on linear mapping according to ray 
optics [18]. Their technique is considered only in a real image 
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field because its elemental images have information of the real 
image field and are simply inverse mappings of elemental 
images with different perspectives at the different distances in 
RPII. Here, the size of mapping for each pixel in the elemental 
images is linearly proportional to the distance between lenslet 
array and the reconstruction image plane. However, the DPII 
system is different. In the DPII system [13], the elemental 
images are synthesized with information of 3D objects for both 
real and virtual fields. Therefore, the reconstruction should also 
be considered through both real and virtual image fields to 
extract full volume information.  

In this paper, we propose a computational reconstruction 
technique for use in DPII where the elemental images have 
information of 3-D objects through real and virtual image fields. 
In our technique, we reconstruct full volume information from the 
elemental images through both real and virtual image fields. Here, 
we use uniform mappings of elemental images with the size of 
the lenslet regardless of the distance between the lenslet array and 
reconstruction image plane. To show the feasibility of the 
proposed technique, we reconstructed 3-D reconstructed images 
plane by plane in both real and virtual image fields by using 
synthesized elemental images. Our method can give us full 3D 
volume information through both real and virtual image fields. 

II. Computational Reconstruction Technique in Integral 
Imaging by Use of both Real and Virtual Image 
Fields 

Figure 1 illustrates the DPII system. Here, we suppose that 
the system is diffraction-free for simplification. The distance 
between lenslet array and image sensor is g, and the focal 
length of the lenslet is f. We obtain DPII by use of real and 
virtual image fields when g=f. The rays from the pixels of a 
display panel become parallel through the lenslet array. The 
spot size of the integral point image in space is similar to lenslet 
size d regardless of distance L. The elemental images of 3-D 
objects to be displayed in a display panel are synthesized with 
the method in [13]. The pinhole array is used for synthesizing 
elemental images. Figure 2 shows the pickup of elemental  
 

 

Fig. 1. DPII system by use of both real and virtual image fields.
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Fig. 2. An example to obtain the synthesized elemental images in 
DPII. 
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Fig. 3. Computational reconstruction technique: (a) real image 
field and (b) virtual image field. 
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image through the k-th pinhole in DPII. Rays of the object 
located at the real image field are mapped inversely through the 
pinhole into the pickup plane. And those at the virtual image 
field are mapped directly into the pickup plane as shown in Fig. 2. 
To avoid interference between the neighboring elemental 
images, the pickup angle α=2tan-1(d/2f) should be satisfied. 

Figure 3 illustrates the proposed reconstruction technique in 
DPII by use of both real and virtual image fields. A display 
panel and a reconstruction image plane are located at –f and L 
from the display lenslet array, respectively. When L≥0, we can 
obtain the reconstructed image of 3-D objects in the real image 
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field, as shown in Fig. 3(a). The rays from each pixel in the 
display panel are parallel because a display panel is located at 
focal length f of the lenslet. Let us assume that Ek(x,y) is a pixel 
of k-th elemental images as shown in Fig. 3(a). And we 
consider a mapping procedure of Ek(x,y) to the reconstructed 
image plane. Then, the mapping position can be calculated by 
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where x and y are from -d/2 to d/2. At the mapping position, the 
mapping size of reconstructed image point from each pixel 
becomes 
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in the reconstructed image plane. From (1) and (2), all rays 
from elemental images are uniformly mapped at their mapping 
positions with beam size d into the reconstructed image plane 
regardless of distance L. On the other hand, a reconstruction 
image in the virtual image field is obtained when L<0, as 
shown in Fig. 3(b). Here, mappings of all rays from elemental 
images are performed behind the display lenslet array. By 
repeating the mappings of elemental images for the entire 
range of L, we can obtain full reconstruction information of 3-
D images throughout both real and virtual image fields.  

III. Experiments and Results 

To demonstrate the proposed reconstruction technique in 
DPII, we performed preliminary experiments. The 
experimental structure is shown in Fig. 4. We used a 3-D object 
composed of four 2-D character patterns, ‘I’, ‘T’, ‘R’ and ‘C’ 
whose size is 1020 × 750 pixels. The patterns are longitudinally 
located at +90 mm, +30 mm, -3 mm, and -45 mm from the 
origin of the lenslet array, respectively. The lenslet array has 34 
× 25 lenslets whose sizes are 1 mm. Each lenslet is 30 × 30 
pixels. Focal length f of the lenslets is 3 mm. The elemental 
images were synthesized as shown in Fig. 2. Figure 5 shows 
the synthesized elemental images used in the experiment.  
 

 

Fig. 4. Experimental structure. 
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Fig. 5. The elemental images used in the experiment.  
 

 

Fig. 6. Eight reconstructed images, where L = (a) +90 mm, (b) 
+45 mm, (c) +30 mm, (d) 0 mm, (e) –3 mm, (f) –30 mm, 
(g) –45 mm, and (h) –90 mm. 
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The reconstruction was performed by use of synthesized 
elemental images. Each pixel from the elemental images was 
uniformly mapped with a beam size of 3 mm into the 
reconstructed image plane. The entire reconstruction image was 
obtained by repeating all the pixels of the elemental images. 
Figure 6 shows the computationally reconstructed images at 
various display planes using the proposed reconstruction 
technique. The size of each reconstructed image is 1000 × 1000 
pixels. Eight reconstructed images at distances of L = +90, +45, 
+30, 0, -3, -30, -45, and -90 mm are shown in Figs. 6(a) through 
6(h), respectively. We can see clear images at L = +90, +45, -3, 
and -45 mm, which are the image display planes of the patterns. 
However, we can see blurred images at other distances. Even 
though the computational conditions are not perfect, we believe 
that our experiment was successfully demonstrated. 

IV. Discussion and Conclusion 

Although DPII provides a wide depth presentation of 3-D 
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images, there is a problem of reconstructing a low resolution 3-D 
image. In DPII, the resolution of 3-D images largely depends 
on the number of lenslets in the display lenslet array. Therefore, 
a high resolution 3-D image requires the number of lenslets to 
be as large as possible. In real implementation, however, this is 
not easy due to the limitations of devices such as the display 
panel and lenslet array. We should consider this tradeoff in a 
system design. 

Until now, elemental images in DPII have been synthesized 
using only a computer. This is the reason why it is not easy 
work to pickup strong intensity distribution of 3-D objects in a 
Fourier-transform plane of lenslets in an optically direct pickup. 
Even though there is no method of direct pickup at present, 
DPII with a wide depth range can be used in other 3-D display 
applications such as a 3-D animation display without the use of 
optical devices. We believe that the direct pickup in DPII will 
be the focus of our future work.  

In conclusion, we have proposed a computational 
reconstruction technique in DPII by use of both real and virtual 
image fields. We performed experiments with 3-D objects to 
show the feasibility of the proposed reconstruction technique. 
Our full 3-D reconstruction information throughout real and 
virtual image fields can be used for image processing 
applications. 
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