Browse > Article
http://dx.doi.org/10.12941/jksiam.2014.18.077

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS  

Zhang, Tingting (Department Of Computational Science And Engineering, Yonsei University)
Bera, Tushar Kanti (Department Of Computational Science And Engineering, Yonsei University)
Woo, Eung Je (Department Of Biomedical Engineering, Kyung Hee University)
Seo, Jin Keun (Department Of Computational Science And Engineering, Yonsei University)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.18, no.2, 2014 , pp. 77-105 More about this Journal
Abstract
Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.
Keywords
inverse problem; electrical tissue property imaging; Maxwell's equations; homogenization; electrical impedance tomography; bioimpedance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Lasia, Electrochemical impedance spectroscopy and its applications, Modern Aspects of Electrochemistry, 32(1999), pp.143-248.
2 E. Lee, J. K. Seo, E. J. Woo, and T. Zhang, Mathematical framework for a new microscopic electrical impedance tomography (micro-EIT) system, Inverse Problems, 27(2011), 055008.   DOI   ScienceOn
3 K. Lee, J. K. Seo, and E. J. Woo, Quantification of spectroscopic apparent admittivity distribution using MREIT and EPT, in preparation.
4 J. Liu, J. K. Seo, and E. J. Woo, A posteriori error estimate and convergence analysis for conductivity image reconstruction in MREIT, SIAM J. Appl. Math., 70(2010), pp. 2883-2903.   DOI
5 O. G. Martinsen, S. Grimnes, and H. P. Schwan, Interface phenomena and dielectric properties of biological tissue, Encyclopedia of Surface and Colloid Science, (2002).
6 R. V. Hill, J. C. Jansen, and J. L. Fling, Electrical impedance plethysmography: a critical analysis, J. Appl. Physiol., 22(1967), pp. 161-168.   DOI
7 B. Harrach, J. K. Seo, and E. J.Woo, Physical justification of the factorization method in frequency-Difference electrical impedance tomography, IEEE Trans. Med. Imaging, 29(2010), pp. 1918-1926.   DOI
8 D. Holder, Electrical impedance tomography: methods, history and applications, Bristol, UK, IOP Publishing, (2005).
9 K. F. Hasanov, A. W. Ma, A. I. Nachman, and M. L. Joy, Current density impedance imaging, IEEE Trans. Med. Imag., 27(2008), pp. 1301-1309.   DOI
10 R. P. Henderson and J. G. Webster, An impedance camera for spatially specific measurements of the thorax, IEEE Trans. Biomed. Eng., 25(1978), pp. 250-254.
11 D. I. Hoult and R. E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment, J. Magn. Reson., 24(1976), pp. 71-85.
12 D. I. Hoult, The principle of reciprocity in signal strength calculations-a mathematical guide, Concepts Magn. Reson., 12(2000), pp.173-187.   DOI
13 D. Isaacson, Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Med. Imag., 5(1986), pp. 91-95.   DOI
14 M. L. Joy, G. C. Scott, and R. M. Henkelman, In-vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging, 7(1989), pp. 89-94.   DOI   ScienceOn
15 M. L. Joy, A. I. Nachman, K. Hasanov, R. S. Yoon, and A. W. Ma, A new approach to current density impedance imaging (CDII), in Proc. 12th Annu. ISMRM Int. Conf., Kyoto, Japan, 356(2004).
16 U. Katscher, T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke, and O. Dossel, Determination of electrical conductivity and local SAR via B1 mapping, IEEE Trans. Med. Imag., 28(2009), pp. 1365-1374.   DOI
17 U. Katscher, D. H. Kim, and J. K. Seo, Recent progress and future challenges in MR electric properties tomography, Computational and Mathematical Methods in Medicine, 2013(2013), 546562.
18 C. Gabriel, S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. literature survey, Phys. Med. Biol., 41(1996), pp. 2231-2249.   DOI   ScienceOn
19 C. Kenig, J. Sjöstrand, and G. Uhlmann, The Calderon problem with partial data, Ann. Math., 165(2007), pp. 567-591.   DOI
20 L. A. Geddes and L. E. Baker, The specific resistance of biological material: a compendium of data for the biomedical engineer and physiologist, Med. Biol. Eng., 5(1967), pp. 271-293.   DOI   ScienceOn
21 S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. measurements in the frequency range 10Hz to 20GHz, Phys. Med. Biol., 41(1996), pp. 2251-2269.   DOI   ScienceOn
22 S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues, Phys. Med. Biol. 41(1996), pp. 2271-2293.   DOI   ScienceOn
23 H. Griffiths, Magnetic induction tomography, Meas. Sci. Technol., 12(2001), pp. 1126-1131.   DOI
24 R. W. Griffths, M. E. Philpot, B. J. Chapman, and K. A. Munday, Impedance cardiography: non-invasive cardiac output measurement after burn injury, Int. J. Tissue React., 3(1981), pp. 47-55.
25 E. M. Haacke, L. S. Petropoulos, E. W. Nilges, and D. H. Wu, Extraction of conductivity and permittivity using magnetic resonance imaging, Phys. Med. Biol. 36(1991), pp. 723-734.   DOI
26 E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic resonance imaging: physical principles and sequence design, John Wiley&Sons, (1999).
27 M. Hanke, B. Harrach, and N. Hyvonen, Justification of point electrode models in electrical impedance tomography, Math. Models Methods Appl. Sci. 21(2011), pp. 1395-1413.   DOI
28 M. J. Hamamura, L. T. Muftuler, O. Birgul, and O. Nalcioglu, Measurement of ion diffusion using magnetic resonance electrical impedance tomography, Phys. Med. Biol., 51(2006), pp. 2753-2762.   DOI
29 T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions, Kolloid-Zeitschrift, 171(1960), pp. 23-31.   DOI
30 M. Hanke and M. Bruhl, Recent progress in electrical impedance tomography, Inverse Problems, 19(2003), pp. S65-S90.   DOI
31 T. Hao, Electrorheological fluids: the non-aqueous suspensions, Elsevier, (2011).
32 A. P. Calderon, On an inverse boundary value problem, In seminar on numerical analysis and its applications to continuum physics, Sociedade Brasileira de Matematica, (1980), pp. 65-73.
33 L. Borcea, Electrical impedance tomography, Inverse Problems, 18(2002), pp. R99-R136.   DOI
34 B. H. Brown, D. C. Barber, and A. D. Seagar, Applied potential tomography: possible clinical applications, Clin. Phys. Physiol. Meas., 6(1985), pp. 109-121.   DOI
35 R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions, Commun. Part. Diff. Eqns., 22(1997), pp. 1009-1027.   DOI
36 M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41(1999), pp. 85-101.   DOI   ScienceOn
37 C. H. Cunningham, J. M. Pauly, and K. S. Nayak, Saturated double-angle method for rapid B1+ mapping, Magn. Reson. Med., 55(2006), pp. 1326-1333.   DOI
38 K. S. Cheng, D. Isaacson, J. C. Newell, and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36(1989), pp. 918-924.   DOI   ScienceOn
39 C. M. Collins, Q. X. Yang, J. H.Wang, X. Zhang, H. Liu, S. Michaeli, X. H. Zhu, G. Adriany, J. T. Vaughan, P. Anderson, H. Merkle, K. Ugurbil, M. B. Smith, and W. Chen, Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz, Magn. Reson. Med., 47(2002), pp. 1026-1028.   DOI   ScienceOn
40 R. D. Cook, G. J. Saulnier, D. G. Gisser, J. G. Goble, J. C. Newell, and D. Isaacson, ACT3: A high-speed, high-precision electrical impedance tomography, IEEE Trans. Biomed. Eng., 41(1994), pp. 713-722.   DOI   ScienceOn
41 H. Fricke, A mathematical treatment of the electrical conductivity of colloids and cell suspensions, J. Gen. Physiol., 6(1924), pp. 375-384.   DOI
42 D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. Sci. Instrum., 17(1984), pp. 723-733.   DOI   ScienceOn
43 A. Adler et al, GREIT: a unified approach to 2D linear EIT reconstruction of lung images, Physiol. Meas., 30(2009), pp. S35-S55.   DOI
44 S. Akoka, F. Franconi, F. Seguin, and A. Le Pape, Radiofrequency map of an NMR coil by imaging, Magn. Reson. Imag., 11(2009), pp. 437-441.
45 H. Ammari and H. Kang, Polarization and moment tensors with applications to inverse problems and effective medium theory, Appl. Math. Sci., Sprinter-Verlag, New York, (2007).
46 P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46(1999), pp. 1150-1160.   DOI
47 H. Ammari, J. Garnier, L. Giovangigli, W. Jing, and J. K. Seo, Spectroscopic imaging of a dilute cell suspension, arXiv:1310.1292, (2013).
48 M. Bayram and C.W. Yancy, Transthoracic impedance cardiography: a noninvasive method of hemodynamic assessment, Heart Fail. Clin., 5(2009), pp. 161-168.   DOI
49 J. Wang, M. Qiu, Q. X. Yang, M. B. Smith, and R. T. Constable, Measurement and correction of transmitter and receiver induced nonuniformities in vivo, Magn. Reson. Med., 53(2005), pp. 408-417.   DOI
50 W. E. Vaughan, Dielectric relaxation, Ann. Rev. Phys. Chem., 30(1979), pp. 103-124.   DOI
51 K. W. Wagner, Erklarung der dielectrischen nachwirkungsworgange auf grund maxwellscher vorstellungen, Archiv fur Elektrotechnik, 2(1914), pp. 371-387.   DOI
52 J. G. Webster, Electrical impedance tomography, Adam Hilger, (1990).
53 A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood, and B. H. Brown, Mk3.5: a modular, multifrequency successor to the Mk3a EIS/EIT system, Physiol. Meas., 22(2001), pp. 49-54.   DOI   ScienceOn
54 H. Wen, Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI, Proc. SPIE, 5030(2003), pp. 471-477.
55 E. J. Woo, S. Y. Lee, and C. W. Mun, Impedance tomography using internal current density distribution measured by nuclear magnetic resonance, Proc. SPIE, 2299(1994), pp. 377-385.
56 E. J. Woo and J. K. Seo, Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging, Physiol. Meas., 29(2008), pp. R1-R26.   DOI   ScienceOn
57 N. Zhang, Electrical impedance tomography based on current density imaging, MS Thesis, Dept. of Elec. Eng., Univ. of Toronto, Toronto, Canada, (1992).
58 J. K. Seo, K. Jeon, C. O. Lee, and E. J. Woo, Non-iterative harmonic Bz algorithm in MREIT, Inverse Problems, 27(2011), 085003.   DOI
59 J. K. Seo, J. Lee, S. W. Kim, H. Zribi, and E. J. Woo, Frequency-difference electrical impedance tomography (fdEIT): algorithm development and feasibility study, Physiol. Meas., 29(2008), pp. 929-944.   DOI
60 J. K. Seo, J. R. Yoon, E. J.Woo, and O. Kwon, Reconstruction of conductivity and current density images using only one component of magnetic field measurements, IEEE Trans. Biomed. Eng., 50(2003), pp. 1121-1124.   DOI   ScienceOn
61 J. K. Seo, M. Kim, J. Lee, N. Choi, E. J.Woo, H. J. Kim, O. I. Kwon, and D. Kim, Error analysis for electrical property imaging using MREPT, IEEE Trans. Med. Imag., 31(2012), pp. 430-437.   DOI
62 J. K. Seo and E. J. Woo, Magnetic resonance electrical impedance tomography(MREIT), SIAM Rev., 53(2011), pp. 40-68.   DOI
63 J. K. Seo and E.J. Woo, Nonlinear inverse problems in imaging, Wiley Press, (2012).
64 J. K. Seo, E. J. Woo, U. Katscher, and Y. Wang, Electro-Magnetic tissue properties MRI, Imperial College Press, (2014).
65 J. K. Seo, T. K. Bera, H. Kwon, and R. Sadleir, Effective admittivity of biological tissues as a coefficient of elliptic PDE, Computational and Mathematical Methods in Medicine, 2013(2013), 353849.
66 E. Somersalo, M. Cheney, D. Isaacson, and E. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Problems, 7(1991), pp. 899-926.   DOI
67 E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52(1992), pp. 1023-1040.   DOI   ScienceOn
68 S. R. Thomas and R. L. Dixon, NMR in medicine: the instrumentation and clinical applications, Amer. Inst. of Physics, New York, (1986), pp. 549-563.
69 Y. Song and J. K. Seo, Conductivity and permittivity image reconstruction at the Larmor frequency Using MRI, SIAM J. Appl. Math., 73(2013), pp. 2262-2280.   DOI
70 R. Stollberger and P. Wach, Imaging of the active B1 field in vivo, Magn. Reson. Med., 35(1996), pp. 246-251.   DOI
71 J. Thuery, Microwaves: industrial, scientific and medical applications, Artech House Inc., London, (1992).
72 A. R. A. Rahman, J. Register, G. Vuppala, and S. Bhansali, Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap), Physiol. Meas., 29(2008), pp. S227-S239.   DOI
73 M. Pavlin and D. Miklavcic, Effective conductivity of a suspension of permeabilized cells: a theoretical analysis, Biophys. J., 85(2003), pp. 719-729.   DOI
74 S. D. Possion, Memoires De L'Academie RoyaLe Des Sciences De L'Institut De France, 5(1986), pp. 488.
75 S. B. Rutkove, Electrical impedance myography: background, current state, and future directions, Muscle& Nerve, 40(2009), pp. 936-946.   DOI
76 S. B. Rutkove, P. M. Fogerson, L. P. Garmirian, and A. W. Tarulli, Reference values for 50-kHz electrical impedance myography, Muscle&Nerve, 38(2008), pp. 1128-1132.
77 R. Sadleir, S. Grant, S. U. Zhang, B. I. Lee, H. C. Pyo, S. H. Oh, C. Park, E. J. Woo, S. Y. Lee, O. Kwon, and J. K. Seo, Noise analysis in MREIT at 3 and 11 Tesla field strength, Physiol. Meas., 26(2005), pp. 875-884.   DOI   ScienceOn
78 H. P. Schwan, Electrical properties of tissue and cell suspensions, Adv. Biol. Med. Phys., 5(1957), pp. 147-209.   DOI
79 F. Santosa and M. Vogelius, A back-projection algorithm for electrical impedance imaging, SIAM J. Appl. Math., 50(1990), pp. 216-243.   DOI
80 H. Scharfetter, H. K. Lackner, and J. Rosell, Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues, Physiol. Meas., 22(2001), pp. 131-146.   DOI   ScienceOn
81 H. P. Schwan, Electrical properties of tissue and cell suspensions: mechanisms and models, Proc. 16th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, 1(1994), pp. A70-A71.
82 G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imag., 10(1991), pp. 362-374.   DOI   ScienceOn
83 G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, Sensitivity of magnetic-resonance current density imaging, J. Mag. Res., 97(1992), pp. 235-254.
84 G. C. Scott, NMR imaging of current density and magnetic fields, PhD Thesis, University of Toronto, (1993).
85 S. O. Nelson, Dielectric properties of agricultural products measurements and applications, IEEE Trans. Elec. Insul., 26(1991), pp. 845-869.   DOI
86 J. Nyboer, Electrical impedance plethysmography a physical and physiologic approach to peripheral vascular study, Circulation, 2(1950), pp.811-821.   DOI
87 S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, T. S. Kim, O. Kwon, and J. K. Seo, Electrical conductivity images of biological tissue phantoms in MREIT, Physiol. Meas., 26(2005), pp. S279-S288.   DOI   ScienceOn
88 T. I. Oh, H. Koo, K. H. Lee, S. M. Kim, J. Lee, S. W. Kim, J. K. Seo, and E. J. Woo, Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging, Physiol. Meas., 29(2008), pp. 295-307.   DOI   ScienceOn
89 T. I. Oh, K. H. Lee, S. M. Kim, H. Koo, E. J. Woo, and D. Holder, Calibration methods for a multi-channel multi-frequency EIT system, Physiol. Meas., 28(2007), pp. 1175-1188.   DOI
90 T. I. Oh, E. J. Woo, and D. Holder, Multi-frequency EIT system with radially symmetric architecture: KHU Mark1, Physiol. Meas., 28(2007), pp. S183-S196.   DOI
91 T. I. Oh, Y. T. Kim, A. Minhas, J. K. Seo, O. I. Kwon, and E. J. Woo, Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT, Phys. Med. Biol., 56(2011), pp. 2265-2277.   DOI
92 C. Park, B. I. Lee, O. Kwon, and E. J. Woo, Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT, Physiol. Meas., 28(2006), pp. 117-127.
93 G. Parrinello, S. Paterna, P. D. Pasquale, D. Torres, A. Fatta, M. Mezzero, R. Scaglione, and G. Licata, The usefulness of bioelectrical impedance analysis in differentiating dyspnea due to decompensated heart failure, J. Card. Fail., 14(2008), pp. 676-686.   DOI   ScienceOn
94 M. Pavlin, T. Slivnik, and D. Miklavcic, Effective conductivity of cell suspensions, IEEE Trans. Biomed. Eng., 49(2002), pp. 77-80.   DOI
95 T. Meier, H. Luepschen, J. Karsten, T. Leibecke, M. Großherr, H. Gehring, and S. Leonhardt, Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography, Intensive Care Med., 34(2008), pp. 543-550.   DOI
96 P. Metherall, D. C. Barber, R. H. Smallwood, and B. H. Brown, Three-dimensional electrical impedance tomography, Nature, 380(1996), pp. 509-512.   DOI
97 O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics (second edition), Academic Press, (2011).
98 J. C. Maxwell, A treatise on electricity and magnetism (first edition), Clarendon Press, Oxford, (1873).
99 J. R. Macdonald, Impedance spectroscopy, Ann. Biomed. Eng., 20(1992), pp. 289-305.   DOI   ScienceOn
100 G. W. Milton, The theory of composites, Cambridge University Press, (2002).
101 A. S. Minhas, W. C. Jeong, Y. T. Kim, H. J. Kim, T. H. Lee, and E. J. Woo, MREIT of postmortem swine legs using carbon-hydrogel electrodes, J. Biomed. Eng. Res., 29(2008), pp. 436-442.
102 P. F. van de Moortele, C. Akgun, G. Adriany, S. Moeller, J. Ritter, C. M. Collins, M. B. Smith, J. T. Vaughan, and K. Ugurbil, B1 destructive interferences and spatial phase patterns at 7T with a head transceiver array coil, Magn. Reson. Med., 54(2005), pp. 1503-1518.   DOI
103 J. Mueller, S. Siltanen, and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Imag., 21(2002), pp. 555-559.   DOI
104 A. Nachman, Reconstructions from boundary measurements, Ann. Math., 128(1988), pp. 531-576.   DOI
105 A. Nachman, D. Wang, W. Ma, and M. Joy, A local formula for inhomogeneous complex conductivity as a function of the RF magnetic field, ISMRM 15th Sci. Meeting Exhibit., (2007).
106 H. J. Kim, Y. T. Kim, A. S. Minhas,W. C. Jeong, E. J.Woo, J. K. Seo, and O. J. Kwon, In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment, IEEE Trans. Med. Imag., 28(2009), pp. 1681-1687.   DOI
107 A. Nachman, A. Tamasan, and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70(2010), pp. 3342-3362.   DOI
108 O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49(2002), pp. 160-167.   DOI   ScienceOn
109 H. S. Khang, B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. I. Kwon, J. R. Yoon, and J. K. Seo, J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images, IEEE Trans. Med. Imag., 21(2002), pp. 695-702.   DOI   ScienceOn
110 A. Korjenevsky, V. Cherepenin, and S. Sapetsky, Magnetic induction tomography: experimental realization, Physiol. Meas., 21(2000), pp. 89-94.   DOI
111 O. Kwon, J. K. Seo, and J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Comm. Pure Appl. Math., 55(2002), pp. 1-29.   DOI
112 W. Kuang and S. O. Nelson, Low-frequency dielectric properties of biological tissues: a review with some new insights, Trans. ASAE, 41(1998), pp. 173-184.   DOI
113 U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. Gomez, B. L. Heitmann, L. Kent- Smith, J. C. Melchior, M. Pirlich, et al, Bioelectrical impedance analysis-part I: review of principles and methods, Clin. Nutr., 23(2004), pp. 1226-1243.   DOI   ScienceOn
114 H. Ammari, H. Kwon, E. Lee, and J. K. Seo, Mathematical modeling of mechanical vibration assisted conductivity imaging, to appear.
115 C. Putensen, H. Wrigge, and J. Zinserling, Electrical impedance tomography guided ventilation therapy, Current Opin. Crit. Care, 13(2007), pp. 344-350.   DOI
116 M. Pavlin, N. Pavselj, and D. Miklavcic, Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system, IEEE Trans. Biomed. Eng., 49(2002), pp. 605-612.   DOI   ScienceOn
117 T. I. Oh, Y. T. Kim, A. Minha, J. K. Seo, O. I. Kwon, and E. J. Woo, Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT, Phys. Med. Biol., 56(2011), pp. 2265-2277.   DOI
118 A. Nachman, A. Tamasan, and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25(2009), 035014.   DOI
119 D. Isaacson and M. Cheney, Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms, SIAM J. Appl. Math., 51(1991), pp. 1705-1731.   DOI   ScienceOn
120 A. Nachman, A. Tamasan, and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23(2007), pp. 2551-2563.   DOI