• Title/Summary/Keyword: Computational and experimental methods

Search Result 467, Processing Time 0.026 seconds

Optimal Stiffness Estimation of Composite Decks Model using System Identification (System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

Numerical calculation of Laminar flow in a Square Duct of 90° Bend (정사각형 단면을 갖는 90° 곡관의 층류유동 계산)

  • Kim H. T.;Kim J. J.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

Analysis of Added Resistance in Short Waves (단파장 영역에서의 부가저항 해석)

  • Yang, Kyung-Kyu;Seo, Min-Guk;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

Vortex Ring, Shock-Vortex Interaction, and Morphological Transformation Behind a Finite Cone

  • Jang, Seo-Myeong;Jang, Geon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1599-1604
    • /
    • 2001
  • Axisymmetric compressible flow field induced by shock diffraction from a finite cone is investigated with experimental and computational methods. Double-exposure holographic interferograms show ima ges of the density field integrated along the light path. Using the sight-integrated density based on the Able transformation, the axisymmetric computational results are compared qualitatively with the experiment. In the present paper, we observed some distinguishing flow physics: the fault structure of vortex ring, the shock-vortex interaction, and the morphological transformation of shock waves.

  • PDF

Analysis of Rarefied Nozzle Flow by Generalized Hydrodynamic Equations (GH 방정식을 이용한 희박 노즐의 해석)

  • Chae D.;Kim C.;Rho O. H.;Myong R. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.60-65
    • /
    • 2000
  • This paper presents the analysis of flowfield inside a low-density nozzle and its plume into near vacuum. The generalized hydrodynamics equations are numerically solved for the purpose with the help of modern computational fluid dynamic methods. The results taken along the nozzle are compared with those of Navier-Stokes equations and available experimental data. The plume outside the nozzle is also analyzed in order to examine the adverse effects of its impingements.

  • PDF

Fast Object-Tracking Algorithm using Projection Method (투영 기법을 이용한 고속 오브젝트 추적 알고리즘)

  • 박동권;임재혁;원치선
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.597-600
    • /
    • 1999
  • In this paper, we propose a fast object-tracking algorithm in a moving picture. The proposed object-tracking algorithm is based on a projection scheme. More specifically, to alleviate the computational complexities of the previous motion estimation methods, we propose to use the projected row and column 1-D image data to extract the motion information. Experimental results show that the proposed method can detect the motion of an object fairly well with reduced computational time.

  • PDF

A Thrombus Growth Model Based on Level Set Methods

  • Ma, Chaoqing;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.137-142
    • /
    • 2016
  • In this paper, a multi-scale model is applied to the simulation of thrombus growth. This model includes macroscale model and microscale model. The former is used to model the plasma flow with Navier-Stokes equations, and the latter is used to model the platelets adhesion and aggregation, thrombus motion, and the surface expansion of thrombus. The force acting on platelets and thrombus from plasma is modeled by the drag force, and the forces from biochemical reactions are modeled by the adhesion force and the aggregation force. As more platelets are merged into the thrombus, the thrombus surface expands. We proposed a thrombus growth model for simulating the expansion of thrombus surface and tracking the surface by Level Set Methods. We implemented the computational model. The model performs well, and the experimental results show that the shape of thrombus in level set expansion form is similar with the thrombus in clinical test.

Control of Morphological Development and Transformation of Curves (곡선의 형태학적 성장과 변환의 제어 방법)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.354-365
    • /
    • 2007
  • We present novel methods to generate a sequence of shapes that represents the pattern of morphological development or transformation of Bezier curves. The presented methods utilize the intrinsic geometric structures of a Bezier curve that are derived from rib and fan decomposition (RFD). Morphological development based on RFD shows a characteristic pattern of structural growth of a Bezier curve, which is the direct consequence of development path defined by fans. Morphological transformation based RFD utilizes development patterns of source and target curves to mimic the theory of evolutionary developmental biology: although the source and target curves are quite different in shapes, we can easily find similarities in their younger shapes, which makes it easier to set up feature correspondences for blending them. We also show that further controls on base transformation for intensity of feature blending, and extrapolation can compensate the immaturity of blended curves. We demonstrate the experimental results where transformation patterns are smoother and have unique geometric style that cannot be generated using conventional methods based on multi-linear blending.

Computational load reduction by avoiding the recalculation of angular redundancy in computer-generated holograms

  • Jia, Jia;Chen, Jhensi;Chu, Daping
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • A fast hologram calculation approach is proposed to reduce computational load by avoiding the recalculation of redundancy information. In the proposed method, the hologram is divided into several sub-holograms that record and reconstruct different views of 3D objects. The sub-hologram is generated from its adjacent calculated sub-holograms by only adding the holograms of difference images between an adjacent pair of views. The repetitive information of two adjacent views is called angular redundancy. Therefore, avoiding the recalculation of this angular redundancy can considerably reduce the computational load. Experimental results confirm that the proposed method can reduce the computational time for the statue head, rabbits, and car to 4.73%, 6.67%, and 10.4%, respectively, for uniform intensity, and to 56.34%, 57.9%, and 66.24%, respectively, for 256 levels intensity, when compared to conventional methods.