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Optimal Stiffness Estimation of Composite Decks Model

using System Identification
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ABSTRACT

Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much
literature exists on their structural mechanical behavior. As there are many differences between
numerical displacements through static analysis of the primary model and experimental displacements
through static load tests, system identification (SDtechnicues such as Neural Networks (NN) and
support vector machines (SVM) utilized in the optimization of the FE model. During the process of
identification, displacements were used as input while stiffness as outputs. Through the comparison of
numerical displacements after SI and experimental displacements, it can note that NN and SVM would
be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface
method and iteration were proposed to optimize the estimated stiffness. Finally, the results were
compared through the mean square error (MSE) of the differences hetween numerical displacements
and experimental displacements at 6 points.

Keywords: fiber reinforced polymer (FRP), finite element model (FEM), neural networks (NN),
support vector machines (SVM), system identification (SI)

1. Introduction

The use of Fiber Reinforced Polymer (FRP) as a primary structural material is developing rapidly in the
construction industry. FRP materials have considerable advantages in terms of weight, strength and
corrosion resistance. They have been used for several decades in the aerospace, automobile and marine
industries, where they have developed a good record of accomplishment in very adverse environmental
conditions. Although FRP composites are increasingly beingconsidered for use in civil engineering, their
widespread use is constrained due to current consideration of higher initial cost, lack of comprehensive
design approaches and guidelines, and the predominant use of a one-to-one replacement methodology that
often restricts the full utilization of the characteristics of the material. The development of such new FRP
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composite bridge systems raises concerns related to the dynamic response, including under traffic loads, due
to the mass and stiffness characteristics which are significantly different from those of conventional steel
and structural concrete bridge structural components. Therefore, the technique of system identification is
needed to update the finite element models of FRP decks.

The identification of mathematical models of physical structures based onexperimental measurements is a
problem that has been receiving increasing attention in the recent past. Numerous publications ave available
on the subject of system identification of structures(Astrom & Evkoff, Ljung, Billings). The most familiar
approaches for system identification are Neural Networks and Suppart Vector Machine. NN has been used
in identification for health monitoring and damage detection{Chassiakos & Masri), Feng et of proposed a
method to build baseline models for bridge performance monitoring using Neural Networks. An improved
approach for nonlinear system identification using neural networks was proposed by Gupta and Sinha. Tang
et af proposed an online sequential weighted Least Squares Support Vector Machine (1LS-SVM) technigue fo
identify the structural parameters and their changes when vibration data involve damage events that can be
used for structural health monitoring. Support vector machines framework for linear signal processing was
posted by R-Alvarez et al.

The paper s organized as follows’ Section 2 expounds the theory of Neural Networks and Support Vector
Machine used for system identificationIn Section 3, static displacement tests are performed and primary
finite element model is built, while the identifications of stiffness are discussed. Among which, the response
surface method (RSM, Hou et of) was utilized to optimize the results. Section 4 Compares experimental
displacements with numerical displacements before system identification and identified by NN and SVM.
Conclusions are drawn in Section 5.

2. Technique of system identification

Identification is the determination, hased on input and output, of a svstem within a specified class of
systems, to which the system under test is equivalent. System identification usnally consisis of two
stages——model selection, and parameter estimation. In neural network based identification, the selection of
the number of hidden nodes corresponds to the model selection stage. The network can be trained in a
supervised manner with a back-propagation algorithm, which is based on an error-correction learning
ride. The error signal is propagated backward through the network, The back-propagation algorithm
utilizes gradient descent to defermine the weights of the network and thus corresponds to the parameter
estimation stage. Newal networks are trained to approximate relations between varlables regardless of
their analytical dependency, they are usually referred to as model-free estimators.

2.1 Neural Networks

Rumelhart et of reported the development of the back-propagation neural network (NN)NN is the
most prevalent of the self-learning model of artificial neural networks. A simple architecture of NN
consistsof an input laver, a hidden layer, an output layver, and connections belween them (Fig. 1)
Sigmeid functions are utilized as non-lnear activation functions for all lavers,

The corresponding architecture for back- propagation learning is incorporating both the forward and
the backward phases of the computations involved in leaming process. The learning mechanism of this
back-propagation network is a generalized delta rule that performs a gradient deseent on the error space
to minimize the total ervor between the actual calculated values and the desired ones of an ontput laver
during modification of connection strengths. In other words, a least mean sguare procedure is carried out
which finds the values of the connecting weights that minimize the error function by using a gradient
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descent method,

In the back-propagation network, the error at output neurons is propagated backward to hidden layer
neurons, and then to input layer neurons modifying the connection weights and the hiases befween them
by a generalized delta rule. The modification of the weights and the hiases in a generalized delta rule is
used through a gradient descent of the error.

22 Support Vector Machine

SVM can be applied to regression problem by introducing an alternative loss function. The basic idea
of the SVM is to map the input data x ; Into a higher dimensional feature space ¢ (Aizerman el al).
That is, the SVMis to find the regression function that can best approximate the output and an error
tolerance from input data (Fig. 2).
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3. Case studies

3.1 Experimental test

Two steel girders along the longitudinal direction, two smaller steel girders along the transverse
direction bound the test model for static displacement tests of the FRP composite deck between vertical
girders as shown in Fig. 3. Several FRP deck units as shown in Fig. 4 adjoin the FRP composite deck.
All steel girders are using I-shaped. The static displacement experiment was performed for three times,
in which displacements at 6 points were measured. The measured points and experimental results are as
shown in Fig. 3 and Table 1,
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Fig. 5. Schematic of measured points

Fig. 4. Unit module secton
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Table 1 Experimental displacements at 6 points {mm)

LVDT #1 LVDT #2 LVDT 43 LVDT #4 LVDT # LVDT #6
Test 1 0.1600 (.5100 2.3300 0.9200 (.2200 1.7600
Test 2 0.1500 0.4800 2.2900 0.9100 0.2300 1.7500
Test 3 0.1500 0.4300 2.2300 0.8800 0.2300 17000
mean 0.1533 0.4900 2.2833 0.9033 0.2267 1.7367

3.2 Primary finite element model

We selected Strand7 as the finite element analvsis tool, and a total of 172 beam elements, 19836 plate
element and 19261 nodes were used to model the test model as shown in Fig. 6. Plate clement is
extensively used, since the deck was made of FRP laminates. Table 2 shows material properties and
geometric parameters that are their theorv values used to build finite element model.

Table 2 Material properties and geometric paramelers

Thickness| Ex | By | . | Gxy p
fem | inm) | GPa)|(GPa)] Y™ | (GPa) |(@/em3)
_Top 18 | 1583148610253 | 4457 19
Flange
Web 11 1761 | 1427 | 0287 [ 4953] 19
, A Pottom | 1511591 | 1580 | 0230 | 4310| 19
Fig. 8. Finite element model ange

3.3 System identification

During the process of system identification, displacements at 6 different points was selected as input
while stiffness (EX and EYJof flanges and web as output. It means that there are totally 6 input parameters
and 6 output parameters. Here NN and SVM that work in the MATLAB are utilized with collaboration of
Strand?. The processing of SI was as following: Firstly, establishing training database by static analysis
using the primary finite element model. Secondly, Training NN or SVM to obtain the estimated stiffness.
Thirdly, inputting the estimated stiffness to the finite element model.

3.4 Optimization methods
1 Py ¥ et

Fig. 7. Optimization process

Response surface methodology (RSM) is a set of statistical techniques designed to find the optimized
value of the response or toexamine the relationship between experimental responses and variations in the
values of input variables. It 1s also used to optimize response quantities, which are infleenced by several
independent variables, because it provides simple models of complicated processes. Here two methods that
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are sampling point and iteration have been used to optimize the results. And the process of optimization was
carried out as shown in Fig, 7,

(1) Sampling point : one of response surface methods. In the design range of stiffness, firstly, only
first-order approximation to g{X} (Bq. (1)) was vsed for sampling, which resulted in 13 (6x2-1) evenly
distributed design points. Secondly, six parameters of stiffniess were changed simultaneously to form the
upper and lower boundaries. Thirdly, tow kinds of second-order polynomial (Fig. 8 (). (¢} were added in
succession fo find the most ellective and efficient model, which can be described as Eq. (2

g X) = ax+ b 1

i 3 32

gX)=a+ ,Z}bfxf”:” gglcixij+ E,Z”C{,m‘/‘xk, (n=1) (2)

(2) Iteration : In order to get results more accurate, the iteration method was utilized. Moreover, the
staring training database was set to be 15 cases, which is more effective and efficient. Here 15 cases of
training data mean the process of sampling point ending at the second step. The iteration was repeated for
5 times to obtain the trend of improvement.

@ . *
{al without cross terms b} saturated design with cross terms (0} central composite designok

Fig. 8. Design points for sampling

4. Results and discussion

The results were discussed separately, as two methods that are sampling point and iteration were
performed independently. For the purpose of comparing their accurateness, the mean square error which is
the medn square value of differences between numerical displacements and experimental displacerments at 6
points was compared as shown in Fig. 9, 10.
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{a) Training data added (b} Training data added  {&) Training data added (b} Training data added
sampling point iteration data sampling point iferation data
Fig. 9 Comparison of results obtained by SWM Fig. 10 Comparison of results obtained by NN

Here the horizontal axis is cases which means that comparing with experimental displacements. During
the process of adding sampling point, there are four cases totally which are 13, 15, 27, 43 cases of {raining
database. They are following the proceeding as described in the section of sampling point. In addition, the
start-training database of iteration was selecled as 15 cases. From the comparisons, we can nole that
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results obtained by SVM have a trend of optimization either by adding sampling point or iteration. However,
NN performs strangely since it has a different rule for making a decision response surface.

4. Conclusions

As FRP is new to be utilized in the field of civil engineering, their mechanical properties are not well
discussed. This paper proposed two methodologies that are NN and SVM in system identification of
modeling a FRP deck. From the comparison of results, we can note that they are both effective in improving
finite element models. However, they may perform differently when applying the response surface method.

For further studies, we would like to perform researches on two aspects. Firstly, the method of
sampling point will be applied in combination with iteration. Secondly, numerical verifications should he done
to verify which one of NN and SVM is more effective in estimating stiffness of FRP
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